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ABSTRACT

In this paper, we describe a Threshold-Based Selection
(TBS) approach for sparse channel estimation in an
Orthogonal Frequency Division Multiplexing (OFDM)
system. An optimal tap-tuned threshold is derived by
minimizing the Mean Squares Error (MSE) per channel
impulse response coefficient. Comparing the proposed
TMSE approach to the Probabilistic Framework Esti-
mator (PFE) and to former MSE optimization TBS al-
gorithms using the criteria of Oliver, Kang and Rosati,
shows its better performance in terms of true channel
structure detection capacity and of channel response Nor-
malized MSE (NMSE).

Index Terms— Sparse channel estimation, threshold-
based detection, structured estimation, MSE optimization.

1. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) has
received considerable interest as a high data rate wireless
communication system thanks to its easy equalization over
frequency selective channels implied by high data rate trans-
missions. However, the coherent equalizer good performance
is conditioned upon the accuracy of the channel response esti-
mation. Among the mostly used channel estimation methods
are the Least Squares (LS) [5,6] and the Linear Minimum
Mean Squares Error (LMMSE) [7] solutions. At low SNR,
the LS performance is not acceptable because it does not use
any information about the noise. Yet, the LMMSE algorithm,
realizing higher performance, requires the channel statistics
knowledge and a large amount of computations.
The enhanced versions of the LS, which have been introduced
in [5,6], exploit the fact that the Cyclic Prefix (CP) in OFDM
systems is longer than the Channel Impulse Response (CIR)
in order to reduce the estimation noise.
Moreover, in practical wireless channels, only few of the
multi-path components have significant energy, thus resulting

in a sparse CIR structure. Indeed, several authors exploit
the channel sparsity to further enhance its estimation per-
formance. For instance, we distinguish the threshold-based
algorithms [1-4,8,9] and a projection-based approach, named
the Matching Pursuit method [10,11]. Also, a Generalized
Akaike Information Criterion (GAIC) is proposed in [12].
The Threshold-Based Selection (TBS) approach consists in
detecting the CIR structure by comparing the amplitude of
a CIR raw estimate to a given threshold(s). TBS has been
adopted differently in several methods, which can be divided
into two categories. The first one considers a constant thresh-
old value for all the channel taps, such as proposed in [2] by
Kang et. al. In the same vein, Rosati et. al. [4] derive a
sub-optimal threshold by minimizing the MSE of the global
CIR. However, in the second category, an optimal threshold is
tap-tuned such as in [1] and [3] where respectively the Proba-
bilistic Framework Estimator (PFE) and the Threshold-based
modified least squares (Tmls) method, optimizing the CIR
structure detection performance, are presented.
This contribution proposes a novel TBS approach. Combin-
ing the criteria of Rosati et. al. [4] on MSE and the per-tap
tuned threshold approach of PFE. The proposed TMSE opti-
mizes for each tap a threshold to minimize the elementwise
MSE. This elementwise MSE is a weighed sum of MSE
corresponding to active and zero valued coefficients, respec-
tively wheighed by the probability of the tap to be active or
not. The local choice of threshold is expected to enhance the
MSE performance compared to a global approach like that
of Rosati [4], since it adapts for each CIR tap a threshold to
minimize its specific MSE. These thresholds are then applied
on the CIR LS estimate to detect its structure.
This paper is organized as follows. After introducing the
system model in section 2, the TMSE algorithm is developed
in section 3. Then, the performance evaluation, through nu-
merical examples, is given in section 4 before the conclusion.
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2. SYSTEM MODEL

We consider a cyclic prefixed OFDM system with N sub-
carriers operating over a multi-path channel. The subcarriers
are modulated by symbols drawn from a normalized energy
QAM or PAM constellation. We consider the case of a fre-
quency selective multipath slow varying channel, whereby a
block estimation can be envisaged. A pilot OFDM symbol is
then regularly sent for channel estimation purpose.
A discrete version of the system is set, where the sampling
rate is N times the subcarriers spacing, we assume that the
Cyclic Prefix (CP), with length Ng samples, is longer than
the channel memory L and that the synchronization is per-
fect. Then, at the receiver the concatenated N FFT outputs,
after CP removal, are expressed as [2, 4]

Z =
√
NAFh+ Ñ. (1)

where A is a diagonal matrix whose entries are the pilot sym-
bols denoted by {ai}, i = 1, . . . , N . F is the N × N uni-
tary Discrete Fourier Transform (DFT) matrix with entries
Fl,m = 1√

N
e

−j2π(l−1)(m−1)
N where l,m = 1, . . . , N and h

is the sampled CIR. The complex noise Ñ is Gaussian dis-
tributed as Ñ ∼ N

(

0, σ2IN
)

, where σ2 is the noise variance.

3. OPTIMAL THRESHOLD FOR MSE
MINIMIZATION PER CIR COEFFICIENT

In this section, first a survey on the unstructured and struc-
tured LS estimators is given. Then, the proposed TMSE
scheme is detailed.

3.1. Overview of the unstructured and structured LS es-
timation

The CIR LS estimator [5,6] is expressed as

ĥls = h+
1√
N

FHA−1Ñ. (2)

The kth tap LS CIR estimate is then

ĥk = hk + ñh
k , (3)

where ñh
k ∼ N

(

0, 2σ2
n

)

, σ2
n = σ2

2N2

∑N
i=1

1
|ai|2 is the CIR

LS estimation noise variance per dimension.
Since the CIR is sparse, only K out of L taps are effective,
with non zero valued coefficients. Let S = {s1, s2, . . . , sK}
denote the active taps positions within the CIR and let Fs

define the N × K sub-matrix of F obtained by selecting
the columns corresponding to the active taps positions. The
Channel Frequency Response (CFR) can then be expressed
as

H = Fh = Fshs, (4)

where the vector hs of size K concatenates the non zero-
valued entries of h. In our study, the active taps positions
are detected by a thresholding procedure and form the set
Ŝ = {ŝ1, ŝ2, . . . , ŝK̂}, where K̂ is the number of taps de-
tected as active.
The structured LS CIR estimate is obtained by combining (1)
and (4) as

ĥs =
1√
N

F̂†
sA

−1Z = F̂H
s Fshs +

1√
N

F̂H
s A−1Ñ, (5)

where F̂s is a N × K̂ sub-matrix of F obtained by selecting
the columns corresponding to the detected taps positions (el-
ements of Ŝ).
We hereafter characterize the statistical properties of the LS
estimator. Due to the channel sparse structure, the amplitude
of the CIR LS estimate given by (2) verifies

|ĥk| = |hk + ñh
k | for k ∈ S, (6)

|ĥk| = |ñh
k | for k 6∈ S. (7)

We assume that the CIR coefficients hk are zero mean normal
complex random variables with variance σ2

ck per dimention.
Also, the coefficients ñh

k are modeled by a zero mean distri-
bution with equal real and imaginary parts variance σ2

n. So,
the independence between hk and ñh

k allows to deduce that
ĥk = hk + ñh

k of (3) is also zero mean normally distributed
with variance σ2

sk per dimension such as

σ2
sk = σ2

ck + σ2
n for k ∈ S, (8)

σ2
sk = σ2

n for k 6∈ S. (9)

Consequently, the estimated CIR amplitude |ĥk| has a Rayleigh
distribution with mean

√π
2σsk and variance 4−π

2 σ2
sk .

3.2. Proposed TBS approach

For each tap k, located in the CP interval, k = 1, . . . , Ng, a
threshold tk is applied on the amplitude of the LS raw CIR
estimate. The threshold tk is tuned to optimize the CIR ele-
mentwise MSE.
In the following, we first derive the MSE per CIR coefficient,
then analytically compute the optimal threshold expression.
Some practical implementation issues of the proposed scheme
are finally discussed.

3.2.1. MSE per CIR coefficient

The tap elementwise MSE over the CIR length, is given by

MSEk = E
(

|∆hk|2
)

, (10)

with ∆hk = ĥk − hk. For tap k detection, four events can
occur:
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? Correct Rejection : a sample corresponding to a zero val-
ued tap such as |ĥk| = |ñk| < tk is correctly rejected. This
case does not contribute to MSEk.
? False Alarm : a sample that does not contain any channel
energy is reckoned as active, since its energy is greater than
the threshold. In this case, MSEk is expressed as

MSEk = E
(

|ñh
k |2
)

= 2σ2
n.

? Missed Detection : a sample corresponding to an active tap
is not detected, since |ĥk| = |hk + ñk| < tk. This leads to

MSEk = E
(

|hk|2
)

= 2σ2
ck.

? Correct Detection : an active tap is correctly detected,
|hk| = |hk + ñk| > tk and then

MSEk = E
(

|ñh
k |
)

= 2σ2
n.

According to these four possibilities, the kth tap MSE is

MSEk = Pa
(

Pm2σ2
ck + (1− Pm) 2σ2

n

)

+(1− Pa) 2σ2
nPfa (11)

= 2Pa
(

σ2
ck − σ2

n

)

Pm + 2Paσ2
n

+2 (1− Pa)σ2
nPfa. (12)

where Pa is the probability of tap k to be active, Pfa and Pm

are respectively the probabilities of false alarm and of missing
given by

Pfa (tk) = P
(

|ñh
k | > tk

)

= e
− t2k

2σ2
n , and (13)

Pm (tk) = P
(

|hk + ñh
k | < tk

)

= 1− e
− t2k

2(σ2
ck+σ2

n) . (14)

In this way,

MSEk (tk) = 2Pa
(

σ2
ck − σ2

n

)

(

1− e
− t2k

2(σ2
n+σ2

ck)

)

+2Paσ2
n + 2 (1− Pa)σ2

ne
− t2k

2σ2
n . (15)

3.2.2. Optimal Threshold

Our aim is to find the optimal threshold tkopt which mini-
mizes MSEk. In other words, we focus on the search of the
global minimum of MSE (15) as

tkopt = argmintk≥0MSEk (tk) . (16)

To this end, the derivative of MSEk(tk) w.r.t. tk is analyzed.
From (15), this derivative is expressed as

∂MSE
∂tk

= 2tk (1− Pa) e
− t2k

2(σ2
n+σ2

ck)

×
[

Pa

1− Pa

σ2
ck − σ2

n

σ2
n + σ2

ck
− e

− t2kσ2
ck

2σ2
n(σ2

n+σ2
ck)

]

.(17)

We set α = Pa
1−Pa

σ2
ck−σ2

n
σ2
n+σ2

ck
and β = α− e

− t2kσ2
ck

2σ2
n(σ2

n+σ2
ck) .

The last derivative (17) equals zero at two possible values of
tk, denoted tk1 and tk2, which verify

tk1 = 0, (18)

α− e
− t2k2σ2

ck
2σ2

n(σ2
n+σ2

ck) = 0. (19)

The second zero tk2 makes sense if and only if 0 ≤ α ≤ 1.
In the following, we distinguish two cases.
• σ2

ck ≤ σ2
n: In this case, α ≤ 0 and β ≤ 0 leading to

∂MSE
∂tk

≤ 0 then, the threshold minimizing the MSE is
tkopt = +∞, leading to Pfa = 0 and Pm = 1.
• σ2

ck > σ2
n: In this case, α > 0 and we distinguish two

sub-cases.
-If Pa ≤ 0.5: Pa

1−Pa
≤ 1 and then, α < 1, therefore, (19)

admits a solution denoted tkopt and given by

tkopt =

√

2σ2
n

(

1 +
σ2
n

σ2
ck

)

ln
(

1− Pa

Pa

σ2
ck + σ2

n

σ2
ck − σ2

n

)

, (20)

which coincides with tk2 (19).
-If Pa > 0.5: we distinguish two-sub cases.
? For σ2

ck > σ2
n

2Pa−1 : α > 1 and the optimal threshold is equal
to tk1 = 0 which leads to Pfa = 1 and Pm = 0.

? For σ2
ck ≤ σ2

n
2Pa−1 : α ≤ 1 and the optimal threshold is given

by (20).

3.2.3. TMSE implementation

The equation (20) shows that for tkopt evaluation, both of σ2
n

and σ2
ck must be known. So, we propose to estimate them

from the LS CIR noisy estimate ĥ, as

σ̂n =

√

2
π

1
N −Ng

N
∑

i=Ng+1

|ĥi|, and (21)

σ̂ck =

√

max
(

2
π
|ĥk|2 − σ̂2

n, 0
)

, k = 1, . . . , Ng, (22)

where (21) exploits the fact that ĥi for i ≥ Ng is a pure
noise component. Also, the threshold computation requires
the knowledge of the probability of active taps value Pa. If
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no a priori knowledge about the Channel Degree of Sparsity
(CDS) is available, we set Pa = 0.5. Otherwise, if K is
known at the receiver, we set Pa = K

Ng
.

It is worth noting at this level that even if the proposed scheme
is formulated in the case of slow fading block type channel es-
timation, it can be easily extended to non stationary channels,
using a raw comb channel estimation.

4. PERFORMANCE EVALUATION

We here compare the proposed TMSE method performance
to those of the following methods of channel estimation: the
PFE [1], Kang et. al. [2], Oliver et. al. [3] and Rosati et.
al. [4] where their sub-optimal version is considered for an
overall probability of false alarm set to 10−2.
The performance of the different schemes is assessed in terms
of the Normalized Mean Squares Error (NMSE) on the CFR
and of the capacity of true CIR structure detection, where the
rates of tap missing, false alarm and true structure detection
are presented versus the SNR = Es

σ2 , ranging from −10dB
to 30dB, where Es is the transmitted energy per symbol. The

NMSE is defined as NMSE =
E(‖H−Ĥ‖2

2)
E(‖H‖2

2)
, where Ĥ denotes

the CFR estimate recovered as Ĥ = F̂sĥs.

4.1. Simulation parameters

An OFDM system with N = 64 subcarriers and symbols
drawn from a normalized energy 16 QAM is used over a mul-
tipath channel. The CP is of length Ng = N

4 . An OFDM
block thus consists of 80 samples, 16 of which are included
in the CP. The channel coherence time is supposed to cover a
number of OFDM blocks. One OFDM symbol is used as pi-
lot to derive a LS coarse block estimate. The channel power-
delay profile is exponential. It has a maximal memory length
of L = Ng = 16. To evaluate the performance of the channel
estimators, the results are averaged over 8.104 Monte Carlo
trials for each SNR value. At each realization, the K = 3 taps
are randomly positioned within the CP interval at positions s1,
s2 and s3 with coefficient hsi verifying hsi = |hsi |ejΦi with
hsi ∼ N

(

0, 2σ2
ck = e−βsi

)

and Φi ∼ U[0,2π]. The power-
delay profile has a decreasing speed of β = 8

Ng
. Both cases

of known and unknown CDS are envisaged.

4.2. Numerical results

The NMSE performance of the TBS algorithms is depicted in
figure (a), whereby a structured LS is performed based on the
beforehand detected CIR structures, for all of the compared
methods. It shows that for known CDS, the PFE and TMSE
methods achieve comparable performance with a slight ad-
vantage of the PFE at high SNR.
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(a) CFR Normalized Mean Squares Error versus SNR.

−10 −5 0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

R
at

e 
of

 e
ffe

ct
iv

e 
ta

p 
m

is
si

ng

 

 

TMSE−Unknown CDS 
TMSE−Known CDS 
TBS−Oliver
TBS−Kang
TBS−Rosati−Pfa=0.01
PFE−Unknown CDS 
PFE−Known CDS 

(b) Rate of active tap missing versus SNR.

For the more realistic scenario of unknown CDS, the TMSE
achieves a gain of 2dB w.r.t. the PFE algorithm throughout all
the SNR range thanks to its elementwise MSE optimization.
Even if the TBS-Rosati NMSE attains that obtained in the
true CIR structure case at high SNR, it is outperformed by the
proposed TMSE approach below 19dB because of its low rate
of true structure detection. However above 15 dB, the NMSE
achieved by Rosati is lower because its detection capacity of
the structure is much better than that of TMSE.
Examining the active tap missing and the false tap detection
rates obtained by the different schemes and displayed respec-
tively in figures (b) and (c), shows an obvious compromise
between these two detection performance measures. Indeed,
for the active tap missing rate, Rosati algorithm has the poor-
est result, followed by PFE then TMSE in the known CDS
case, then in the unknown CDS case, Kang and Oliver meth-
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(c) Rate of false tap detection versus SNR.
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(d) Rate of true CIR structure detection versus SNR.

ods lead to the lowest missing rates. This order is exactly
reversed in the false alarm tap detection rates. It can be no-
ticed in figure (c) that, for all methods, the false tap detection
rates exhibit a flat behavior as a function of the SNR, in con-
trast to the missing rates, which are decreasing functions of
the SNR.
Figure (d) displays the rate of true CIR structure detection
and shows that discarding the known CDS case, which leads
to the best performance, the higher true detection rate aver-
aged over the SNR range is achieved by the TMSE approach.

5. CONCLUSION

In the frame of OFDM channel estimation, we proposed a
novel threshold-based scheme, which we named TMSE. This
scheme allows to detect the channel impulse response struc-

ture, which is further used to perform a structured channel
response estimation in the least squares sense. The optimized
threshold is tuned for each channel coefficient to minimize
the corresponding mean squares error. Comparing the TMSE
performance to those of existing threshold based selection so-
lutions shows its better performance in terms of normalized
MSE and of true structure detection performance.
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