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ABSTRACT

This paper deals with the identification of a nonlinear sys-
tem modelled by a nonlinear output error (NOE) model when
the system output is disturbed by an additive zero-mean white
Gaussian noise. In that case, standard on-line or off-line least
squares methods may lead to poor results. Here, our approach
is based on evolutionary algorithms. Although their computa-
tional cost can be higher than the above methods, these algo-
rithms present some advantages, which often lead to an ”ef-
fortless” optimisation. Indeed, they do not need an elaborate
formalisation of the problem. When their parameters are cor-
rectly tuned, they avoid to get stuck at a local optimum. To
take into account the influence of the additive noise, we inves-
tigate different approaches and we suggest a whole protocol
including the selection of a fitness function and a stop rule.
Without loss of generality, simulations are provided for two
nonlinear systems and various signal-to-noise ratios.

Index Terms— nonlinear output-error (NOE), biased es-
timates, genetic algorithms, differential evolution.

1. INTRODUCTION

System identification plays a key role to understand, to anal-
yse and/or to predict the behavior of ”real world” systems.
For instance, when studying mechanical structures under vi-
brating environment, the purpose is to retrieve the resonant
frequency and the quality factor from the model parameters.

Two main tasks must be addressed for system identifica-
tion: searching mathematical models and estimating model
parameters.

1/ Modelling: the observed data can take the form of time
series. In the nonlinear case, the family of nonlinear autore-
gressive moving average with exogenous input (NARMAX)
models allows the system input and system output to be re-
lated by using a nonlinear mapping function. Among the most
popular models, the Volterra series which are linear regarding
the model parameters but nonlinear regarding the input have
the advantage of being stable in the bounded input-bounded
output (BIBO) sense. However, the memory and the order

must be often set to large values. Therefore, a NARX model
-with a polynomial form for convenience- can be prefered.

2/ Parameter estimation: for a given model structure, the
set of model parameters has to be estimated. This can be done
in the least squares (LS) sense, in the maximum likelihood
(ML) sense, by using instrumental variables (IV), etc.

When dealing with models linear regarding the parame-
ters and when noise-free data are available, standard on-line
or off-line LS methods can be used. When both the sys-
tem input and output are disturbed by additive white Gaus-
sian noises (AWGNs), the resulting model parameter esti-
mates can be biased. For instance, when dealing with the
Volterra model and if the system input is disturbed by noise,
the standard least mean squares (LMS) algorithm or the off-
line ”Yule-Walker equation” lead to poor results, especially
when the signal-to-noise ratio (SNR) is low. Noise compen-
sated approaches like the ones we have recently proposed in
[1] can be considered. However, the bias of the parameter
vector estimate must be preliminary expressed. It usually de-
pends on a matrix, whose structure varies according to the
memory and the order of the model and whose entries depend
on the additive noise statistics. Alternative solutions can be
based on optimal filtering. In that case, both the noise-free in-
put and output and the parameters must be estimated from the
noisy observations. For this purpose, methods such as the ex-
tended Kalman fillter (EKF) or the extended H∞ filter, which
are based on a 1st-order Taylor expansion of the state space
equation around the last state vector estimate, or the 2nd-order
EKF (SO-EKF) based on a 2nd-order Taylor expansion can
be considered. Nevertheless, this requires the definition of
the state space representation, the computation of Jacobian
and Hessian matrices, etc. Expectation-maximization algo-
rithm can be also used, but it strongly depends on the initial
conditions. Whatever the above methods, if the practitioner
changes the model, he has to study the situation again.

To avoid this drawback, alternative solutions can be con-
sidered and consist in generating the data from the model and
in comparing them with the observations. This can be done by
selecting the model parameters by means of a grid search ap-
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proach to explore the solution space and to find the best can-
didate. However, this method has a high computational cost.
To reduce this latter, one can apply probabilistics techniques
such as evolutionary algorithms (EAs). Starting with a ran-
dom population of parameter candidates taken in the search
space Ω, new populations are iteratively created. These algo-
rithms aim at exploring Ω and evolve towards the candidate
that minimizes a beforehand defined fitness function. Among
EAs, simulated annealing is due to metallurgy whereas ant
colony algorithms and particle swarm optimization take their
origins in ethology. The genetic algorithm (GA) and the dif-
ferential evolution (DE) use mechanisms inspired by biolog-
ical evolution, such as reproduction, crossover and mutation,
with probability pr, pc and pm respectively. It should be noted
that those algorithms are often required for nonlinear esti-
mation issues as in neural sciences [2] or image processing
[3]. Although their computational costs can be higher than
the above standard methods, these algorithms present several
advantages. Firstly, they do not need an elaborate formalisa-
tion of the problem unlike optimal-filtering based methods. If
the model changes, the user has ”just” to modify the way the
data are generated in the algorithm. Secondly, if the quanti-
ties such as the population cardinal, pm, pc, etc. are corretly
tuned, this kind of approach avoids to get stuck at a local op-
timum.

Remark: for the last years, a great deal of interest has
been paid to model structure selection. Thus, machine learn-
ing, such as genetic programming1 (GP) or artificial neural
networks (ANNs), aims at selecting the functions that can be
used to map the input data into the output data. Both methods
are of interest especially for simulation methods. Concern-
ing GP, the model parameters can be jointly estimated with
the model structure in the GP process. Otherwise, for each
tree, the corresponding parameters can be estimated by us-
ing an orthogonal least squares algorithm (OLS) [4], an EA,
etc. Nethertheless, this step is not an easy task with noisy ob-
servations. Takagi-Sugano neuro fuzzy networks (TS) could
also be considered. As TS can be seen as a linear parame-
ter varying system, LS techniques can be used to estimate the
corresponding model parameters. With noisy observations,
IV techniques have been proposed [5]. However, although
this approach seems to be efficient, it requires a partitionning
of the input and output data space by using on-line maxi-
mum distance based clustering such as the evolving clustering
methods, etc. This results in a very sophisticated method that
anybody cannot easily use. For this reason, we will focus on
a priori model based methods or GP in this paper. In both
cases, EAs are of interest for parameter estimation.

1GP consists in initially generating a population of computer programs
that can be representated by trees. The trees define the way to combine the
leafs, namely the data that can be constants and/or observation signals etc.,
by using nodes which correspond to functions (exponential, logarithm, etc.).
For each tree, an evaluation is computed. Then, crossovers which consist
in swapping the sub-trees between selected individuals make the population
evolve. This process is iterated until the stop criterion is reached.

This paper deals with the identification of a nonlinear
mechanical system with a single degree of freedom (SDOF)
modelled by a nonlinear output error (NOE) model. This
kind of system is chosen because it represents the simplest
vibratory system. Then, the model parameters are estimated
by using a stochastic optimization algorithm. Here, the out-
put observations are disturbed by a zero-mean AWGN. For
this purpose, we investigate several fitness functions when
there is only a finite set of noisy observations available to see
the noise impact on the model parameter estimation. This
work is complementary to the study presented in [6] where
the performances of GA and LS methods are compared when
noise-free data are available.

The remainder of the paper is organized as follows: in
section 2, we describe the system and present the stochastic
optimization. In section 3, we study various fitness functions
using noisy output and deduce rules for the estimation algo-
rithm. In section 4, simulation results are given for two mod-
els and for various SNRs without loss of generality.

2. MODEL PARAMETER ESTIMATION FROM
NOISY OBSERVATIONS OF A NARX SYSTEM

The system to be identified is a single-input single-output
(SISO) NARX discrete-time system:

y(n) = f (y(n−1), . . . , y(n−ny), u(n−d), . . . , u(n−nu)) (1)

where u is the exogenous input considered here as the system
input signal, y the output signal of the system, d the system
input delay, nu and ny the memory of the system output and
the system input respectively and f a nonlinear function.

As the system output is disturbed by a zero-mean AWGN
b with variance σ2

b (see Fig. 1), we suggest estimating ŷ by us-
ing the previous estimates ŷ instead of the noisy observations
z. This representation is known as a NOE model:

ŷ(n) = f (ŷ(n−1), . . . , ŷ(n−ny), u(n−d), . . . , u(n−nu)) (2)

u(n)
input

+

−

y(n)
output

b(n)
noise

z(n)
noisy
output

e(n)
error

ŷ(n)
estimated

output

stochastic
optimisation

nonlinear
system

Fig. 1. Stochastic optimization with noisy measurements.

Let us consider a SDOF base excitation mechanical
system, whose motion equation is the following in the
continuous-time domain, see Fig. 2:

mÿ(t) + cẋ(t) + kx(t) + ϕ (x(t)) = 0 (3)

where m denotes the mass, k the stiffness, c the damping co-
efficient, y the mass position in the Galilean reference frame,
x = y − u the mass position with respect to the base position
u and where ϕ represents a nonlinear polynomial function.
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This function can be seen as the so-called stiffness nonlin-
earity often appearing in some mechanical systems. In this
paper, ϕ (x(t)) = px(t)3. Note that the total harmonic distor-
sion (THD) [7] is smaller than 5% for mechanical structure.

In the discrete-time domain, (3) becomes:

y(n)=a1y(n−1)+a2y(n−2)+a3u(n) + a4u(n−1)

+a5u(n−2)+a6(y(n−1)−u(n−1))
3 (4)

where {ai}i=1,...,6 are the parameters that can be expressed
from the quadruplet (m, k, c, p) and the sampling period Ts:






a1 =
2m

T2
s
−k

γ
; a2 =

− m

T2
s
+ c

2Ts

γ
; a3 =

c
2Ts

γ
; a4 = k

γ

a5 = −a3; a6 = −p
γ
, with γ = m

T 2
s
+ c

2Ts

(5)

�
�
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Fig. 2. Nonlinear SDOF with base excitation.

The physical parameters (m, k, c, p) characterize the non-
linearity with the ratio p

m
[8] and are related to the resonant

frequency f0 equal to 1
2π

√

k
m

and the damping ratio ζ0 equal

to 1
2

c
m

√

m
k

. However, there is no unicity of the quadruplet
leading to the quantities of interest: f0, ζ0 and p

m
. Therefore

the vector θt =
[

k
m
, c
m
, p
m

]T
is rather considered.

Remark: when dealing with the Duffing oscillator [8], the
system ouput only depends on the input signal in (4).

To estimate the model parameters from noisy measure-
ments, a stochastic optimization based on any variant of a
GA, a DE, etc. can be used. The Ng model parameters
{θi}1≤i≤Ng

to be estimated , also called genes, are stored
in a (Ng × 1) parameter vector θ, which defines a candidate.
Then, Nc candidates are randomly chosen in Ω to generate
the initial population.

At that stage, the fitness fucntion choice is crucial, as seen
in [9]. A discussion on the estimation protocol is given in the
next section when dealing with noisy observations.

3. IMPROVING THE ESTIMATION PROTOCOL

In the following, rvw(τ) denotes the cross-correlation func-
tion between v and w for lag τ and r̂vw(τ) is its unbiased
estimate based on N samples:

r̂vw(τ) =
1

N − |τ |

N
∑

n=τ+1

v(n)w(n− τ) (6)

Then, Pv represents the power of v:

Pv =
1

N

N
∑

n=1

v2(n) = r̂vv(0) (7)

3.1. Approach #1
Let us look at the following criterion in the noise-free case:

J1 = E
[

(y(n)− ŷ(n))
2
]

= E
[

ỹ(n)2
]

(8)

where E [.] denotes the expectation. However, when b dis-
turbs the system output, the fitness becomes:

J1,noisy = E
[

(z(n)− ŷ(n))
2
]

= J1 + σ2
b (9)

Therefore, minimizing J1,noisy or J1 should lead to the
same solution. However, in practical case and with one real-
ization of the noise-free data, the following fitness function is
rather commonly used:

J1,N =
N
∑

n=1

(y(n)− ŷ(n))
2
=

N
∑

n=1

ỹ(n)2 (10)

After convergence of the stochastic optimization algo-
rithm, J1,N is usually very small (i.e. < 10−10). It has been
confirmed by various simulation tests we carried out.

In the noisy case, the fitness function (10) becomes:

J1,N,noisy =

N
∑

n=1

(z(n)− ŷ(n))
2

= J1,N +

N
∑

n=1

b(n)2 + 2

N
∑

n=1

ỹ(n)b(n)

(11)

Therefore, at any generation of the stochastic optimization
and for a solution candidate leading to ŷ(n), the difference
J1,N,noisy − J1,N is the sum of the two following terms:

• ∑N
n=1 b(n)

2 = σ2
b

∑N
n=1

(

b(n)
σb

)2

= NPb is a random

variable following a χ2 law with N degrees of free-
dom. When N is high (e.g. higher than 100), it can
be approximated by a Gaussian variable, the mean of
which is Nσ2

b and the variance of which is 2Nσ4
b .

• 2
∑N

n=1 ỹ(n)b(n) = 2Nr̂ỹb(0). According to the
Cauchy-Schwartz inequality, the absolute value of this
quantity is smaller than 2N

√

Pỹ

√
Pb.

Then, among the criteria stopping an EA, one could de-
fine a fixed number of generations gmax to be reached. How-
ever, it has the disadvantage of either generating useless pop-
ulations or stopping the algorithm too early. As an alterna-
tive, one could check if the minimum fitness function value
changes from one generation to another [11]. However, the
algorithm can be trapped in a local minimum. Therefore, we
first suggest introducing a threshold under which the mini-
mum value of the fitness function must be. It should be noted
that, when 4Pỹ < Pb, the quantity 2

∑N
n=1 ỹ(n)b(n) is negli-

gible compared to
∑N

n=1 b(n)
2. Therefore, provided that the

convergence of the stochastic algorithm is guaranteed, in most
of the cases (e.g. 99%), the minimum value of J1,N,noisy
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should be in the interval σ̂2
b

[

N−3
√
2N ;N+3

√
2N

]

, where

σ̂2
b is the estimated noise variance2. Thus, under the threshold

T = σ̂2
b

(

N + 3
√
2N

)

, the algorithm could enter in a ’con-
fidence’ area where the minimum value of J1,N,noisy should
be. Whatever the input and the system studied, T is the same.

Once this first convergence criterion is satisfied, we pro-
pose to check if the gene population variance is low, i.e. if
the maximum variance of the Ng genes between the Nc indi-
viduals in the population is lower than 10−3 (according to our
tests). If both criteria are satisfied, one can consider that the
stochastic optimization algorithm has converged. Otherwise,
the estimation must be restarted by changing Nc, increasing
pm, etc. The best chromosome that was obtained can be kept
as an individual in the new initial population. See Fig. 3.

J1,N,noisy < T ?

yes

RESTART

STOP

initialisation

g=g+1
g=g+1

g=g+1yes

no

no no

yes

a low
variance?

a low
variance?

candidate evaluation
and new

candidate creation

Fig. 3. Protocol for stochastic optimization.

Nevertheless, as the difference between J1,N,noisy and
J1,N depends on ŷ(n), we cannot always guarantee that
J1,N,noisy and J1,N lead to the same solution. Therefore, in
the next subsection, we propose fitness functions based on
cross-correlation.

3.2. Approach #2
In this section, we suggest considering fitnesses in which the
influence of the AWGN is weakened. Let us first consider:

J2 =

K
∑

τ=−K

(ryy(τ)− rŷŷ(τ))
2 (12)

with K as high as possible to take into account the spectral
features of the signals. Generally, when dealing with the esti-
mated unbiased cross-correlation function, K does not exceed
1
3N to have confidence on the estimate.

2Various methods can be used to estimate σ2
b

. 1/ the practitioner has the
opportunity to record the system output when no input signal is imposed.
2/ one can study the eigenvalues of the autocorrelation matrix of the noisy
output. The predominant values correspond to the signal subspace whereas
the lower define the noise subspace and hence allow the noise variance to be
estimated. 3/ the M.A.D estimator based on wavelet coefficients cj,k at the
level j and the time k can be considered. In that case, with l the last level,
one has [10]: σ̂b =

mediank(cl,k−mediani(cl,i))

0.6745
.

However, in the noisy case, it leads to:

J2,noisy =
K
∑

τ=−K

τ 6=0

(ryy(τ)− rŷŷ(τ))
2

+
(

ryy(τ) + σ2
b − rŷŷ(τ)

)2

=J2 + σ4
b + 2σ2

b (ryy(τ)− rŷŷ(τ))

(13)

Due to σ4
b + 2σ2

b (ryy(τ)− rŷŷ(τ)) in (13), we cannot
guarantee that J2 and J2,noisy lead to the same minimum.

As a consequence, we suggest the following fitnesses:

J2,bis,noisy =

K
∑

τ=−K

τ 6=0

(rzz(τ)− rŷŷ(τ))
2 (14)

J2,ter,noisy =

K
∑

τ=−K

(

rzz(τ)− σ̂2
bδ(τ)− rŷŷ(τ)

)2
(15)

Remark: If the lag τ = 0 is not included, it is true that the
signal power is not considered in the fitness.

However, when only N samples are available, the cross-
correlation function is replaced by its estimate. Thus N

should be as high as possible.
Note that alternative fitnesses could also be:

J3,bis,N,noisy =

K
∑

τ=−K

τ 6=0

(r̂zz(τ)− r̂zŷ(τ))
2 (16)

J3,ter,N,noisy =
K
∑

τ=−K

(

r̂zz(τ)− σ̂2
bδ(τ)− r̂zŷ(τ)

)2
(17)

4. SIMULATION RESULTS

In this section, we compare the performances of standard
methods, such as the OLS or the recursive LS (RLS), with
EAs in order to estimate the parameters of a SDOF system.
DEs and a GA variant3 initially proposed by Chang [12] are
tested.

The SDOF theoretical parameters θt values are given in
Table 1. The system input is a zero-mean white Gaussian
noise of variance 0.56. Note that for nonlinear systems, the
input signal should be persistent in order to excite all the sys-
tem modes. Then, the sample number N is set to 5000 and
the sampling frequency Fs is equal to 2 kHz. The genetic
variables are the following: Nc = 60, pm = 0.1, pc = 0.8,
pr = 0.1, si=1,2,3 = 0.001 and φ

i=1,2,3
∈ [−0.01; 0.01]3.

3In that case, the pr×Nc worst chromosomes are replaced by the pr×Nc

best ones to define the parent population. Then, three randomly selected chro-
mosomes (θ1, θ2, θ3), where θ1 provides the best fitness function value, are
used to define new candidates as follows: θi ← θi + ri (2θ1 − θ2 − θ3) +
siφi

, with i ∈ (1, 2, 3), ri a random value taken in [0; 1], si a positive con-
stant and φ

i
∈ RNc a (Ng × 1) random noise vector. This could be seen

as a DE due to the mutations based on ri (2θ1 − θ2 − θ3), but there is no
one-to-one competition. Thus, it combines a GA and a DE.
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The results have been obtained on 100 runs. Then, when us-
ing J1,N,noisy , the stochastic optimisation follows the proto-
col described in section 3.1 and 4Pỹ < Pb. For the approach
#2, K is set to 1600 and 200 generations are made.

k
m

c
m

p

m
f0 (Hz) ζ0 THD %

model 1 3.948× 105 6.283× 101 4.343× 103 100 0.05 2.01
model 2 8.883× 105 3.770× 101 −6.218× 103 150 0.02 1.78

minimum 0 0 −1× 105

maximum 1× 106 8× 102 1× 105

Table 1. Theoretical parameters of the SDOF system and the
minimum and maximum values of the search space Ω.

Let us define the following error criterion which is the
relative 1-norm error: e1 = |ϑ̂−ϑt|

|ϑt|
, with ϑ̂ the estimated pa-

rameter to be compared with the theoretical parameter ϑt.
According to Table 2, the parameter estimation error in-

creases with the SNR. Note that the errors obtained with the
DEs are not given for the sake of space, but they are slightly
the same as the ones obtained with the GA variant [12].

Concerning the approach #1: in Fig. 4, J1,N,noisy of the
best candidate reaches a value under T at the convergence.
Note that for the sake of space, only one figure is given. For
the protocole described in section 3.1, to satisfy both con-
vergence criteria, 150 generations are necessary with the GA
variant whereas more than 200 generations are required with
DEs. Increasing the variance threshold in the stochastic opti-
misation algorithm can decrease this generation number.

Concerning the approach #2: the errors on f0 and ζ0 are
higher with the fitness J2,N,noisy than the corresponding fit-
nesses (14) and (15). We can draw the same conclusions with
the fitness 3. Note that the difficulty is to select K.

Given the simulations we carried out with both ap-
proaches, the errors with J1,N,noisy are the lowest in most
of cases. Then, with LS methods, the errors of f0 and ζ0 are
around 100 times higher than when using any DEs or the GA
variant. Increasing N does not change those tendancies.

1 20 40 60 80 100 120 140 160 180 200
101

102

103

104

g

1

J
1
,N
,n
o
is
y

1

 

 

SNR = 20dB
SNR = 15dB
SNR = 10dB

TSNR=20dB

1

TSNR=15dB

1

TSNR=10dB

1

Fig. 4. Fitness function J1,N,noisy of the best candidate and
the threshold T for different SNR on 100 runs.

5. CONCLUSIONS AND PERSPECTIVES

To use EAs with noisy data, we here suggest two approaches.
The first one based on a threshold has the lower computational
cost. Those approaches always provide more reliable results
than standard LS methods. In future works, we will combine
this kind of methods with GP.

Method SNR k
m

c
m

p
m

f0 ζ0(dB)
model 1

J1,N,noisy

20 2.33× 10
−4

2.66× 10
−3 1.00× 10−2

1.16× 10
−4

2.54× 10
−3

15 4.27× 10
−4

4.74× 10
−3 1.82× 10−2

2.13× 10
−4

4.53× 10
−3

10 7.97× 10
−4

8.45× 10
−3 3.34× 10−2

3.98× 10
−4

8.05× 10
−3

J2,N,noisy

20 1.45× 10−3
2.52× 10

−3
6.65× 10

−3 7.26× 10−4
3.25× 10

−3

15 2.57× 10−3
4.45× 10

−3
1.14× 10

−2 1.28× 10−3
5.75× 10

−3

10 4.47× 10−3
6.83× 10

−3
1.68× 10

−2 2.24× 10−3
9.09× 10

−3

J2,bis,N,noisy

20 1.44× 10−3
2.63× 10

−3
6.53× 10

−3 7.21× 10−4
3.35× 10

−3

15 2.52× 10−3
4.57× 10

−3
1.04× 10

−2 1.26× 10−3
5.84× 10

−3

10 4.34× 10−3
7.77× 10

−3
1.49× 10

−2 2.17× 10−3
9.97× 10

−3

J2,ter,N,noisy

20 1.44× 10−3
2.64× 10

−3
6.52× 10

−3 7.20× 10−4
3.36× 10

−3

15 2.51× 10−3
4.58× 10

−3
1.04× 10

−2 1.26× 10−3
5.85× 10

−3

10 4.34× 10−3
7.80× 10

−3
1.49× 10

−2 2.17× 10−3
9.99× 10

−3

OLS/RLS
20 1.82× 10−1 4.53× 10−1 5.33× 10−1 8.68× 10−2 2.94× 10−1

15 5.39× 10−1 1.40 1.07 2.35× 10−1 4.68× 10−1

10 1.34 1.29× 101 2.17 5.13× 10−1 7.78× 10−1

model 2

J1,N,noisy

20 2.48× 10
−6

2.84× 10
−3

2.99× 10
−4

1.24× 10
−6

2.84× 10
−3

15 5.91× 10
−6

5.08× 10
−3

5.68× 10
−4

2.95× 10
−6

5.08× 10
−3

10 1.49× 10
−5

9.11× 10
−3

1.12× 10
−3

7.48× 10
−6

9.11× 10
−3

J2,N,noisy

20 5.34× 10−4
1.70× 10

−3 1.02× 10−2 2.67× 10−4
1.97× 10

−3

15 9.67× 10−4
3.42× 10

−3 1.80× 10−2 4.83× 10−4
3.90× 10

−3

10 1.78× 10−3
6.84× 10

−3 3.22× 10−2 8.90× 10−4
7.73× 10

−3

J2,bis,N,noisy

20 5.20× 10−4
1.59× 10

−3 1.00× 10−2 2.60× 10−4
1.85× 10

−3

15 9.28× 10−4
3.08× 10

−3 1.77× 10−2 4.63× 10−4
3.54× 10

−3

10 1.66× 10−3
5.82× 10

−3 3.14× 10−2 8.32× 10−4
6.65× 10

−3

J2,ter,N,noisy

20 5.15× 10−4
1.87× 10

−3 9.76× 10−3 2.57× 10−4
2.13× 10

−3

15 9.24× 10−4
3.38× 10

−3 1.74× 10−2 4.62× 10−4
3.84× 10

−3

10 1.66× 10−3
6.15× 10

−3 3.11× 10−2 8.32× 10−4
6.98× 10

−3

OLS/RLS
20 6.20× 10−2 8.46× 10−1 1.60× 10−1 3.04× 10−2 9.04× 10−1

15 2.13× 10−1 1.77 3.47× 10−1 9.82× 10−2 1.44
10 6.42× 10−1 5.30 7.59× 10−1 2.56× 10−1 2.54

Table 2. e1 error for standard LS methods and GA [12].
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