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ABSTRACT

This paper presents a new algorithm for the identification
(tracking) of periodically varying systems. When the system
coefficients vary rapidly, conventional adaptive estimators
such as the least mean squares (LMS) and the weighted least
squares (WLS) algorithms become inefficient. Basis
function (BF) algorithms have shown superiority over the
conventional ones in tracking the parameters of periodically
varying systems. Unfortunately, BF estimators are
computationally very demanding. A new recursive inverse
basis function estimator (RIBF) and its frequency-adaptive
version are proposed which provides a significant reduction
in the computational complexity and the mean square
parameter estimation error without the need for any error
correction code.

Index Terms— Basis function algorithms, system
identification, nonstationary process, periodically varying
systems, adaptive filters

1. INTRODUCTION

The distortion introduced by the multipath effect is one of
the main problems of modern wireless communications. The
multipath effect causes interference between two or more
versions of the transmitted signal which arrive at the
receiver along different paths at slightly different times.
When the multipath signal becomes dominant by some
strong reflectors and when the transmitter or receiver moves
with constant velocity, the channel-impulse response
becomes periodic. The multipath effect phenomena can be
modelled as a periodically varying system problem stated in
the following mathematical relation

2(0)=@" (1)6(t) + v(t) 1)
where ¢t =1,2,... denotes normalized discrete time,v(r) is

an additive white noise and y(f) is the system output.
o(t) = [u(t)u(t—1),...,.u(t—n+1]" is the regression vector of the
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past input samples, () =[6,(1),6,().....6,(n]"  1s the vector of

n periodically time varying system coefficients. The i"
system coefficient is modelled as a sum of weighted
exponentials as follows

k )
0,()= Y ae’™ @
=1

where & is the number of different signal paths (fading path
or number of basis functions). Adaptive filters could be
employed efficiently for identifying periodically time-
varying systems under certain conditions [1]. Considering

that the frequencies o, ®,,...,®, are given or estimated a
prior, the parameters or system weighting coefficients a,

are unknown constants and independent of time, or
(possibly) slowly time-varying quantities. The input
sequence is considered as a wide-sense stationary WSS
ergodic process with known positive definite covariance

matrix @, = E[¢(t)¢T (t)} >0.

Under certain conditions one of the applications that
admits such formulation is adaptive equalization of rapidly
fading communication channels [2]. It is known that in
modern wireless communication systems, the main
distortion that the transmitted signal experiences during
transmission is caused mostly by the multipath effect; the
transmitted signal reaches usually a moving receiver (with
constant speed) with different time delays. When this effect
is dominant through different reflectors, this leads to an
unknown periodic channel impulse response which can be
modeled by (2). In this particular case y(f) stands for the
sampled baseband signal received by the mobile radio
system for time sequence ¢ =1,2,...,. u(f) is the transmitted
symbols sequence (which includes the training sequence), &
is the number of signal paths, and @,@,,....,», are the

corresponding Doppler shifts.

When the system parameters change very rapidly,
conventional estimators such as WLS and LMS become
unsatisfactory. Hence, it would be more advantageous to use



a special form of estimators such as the BF algorithms,
which focus on the parameter estimation aspect, as shown in
(2). However, BF estimators suffer from high computational
complexity.

The exponential model described above, which is
adapted for mobile radio channels, has been proposed by
Aiken in 1967. Recently, the same model has been
successfully applied for equalization and wused in
aeronautical radio and underwater acoustic channels [5], [3].

This paper focuses on the parameter tracking aspects
of the complex exponential model and on the computational
complexity criteria. It contributes to the area of adaptive
equalization and communication fields by proposing a new
efficient BF estimator, termed as the recursive inverse basis
function (RIBF). Moreover, for a satisfactory equalization
process, a frequency-adaptive version of RIBF is developed
by means of a simple gradient search strategy. The new BF
estimator outperforms the exponentially weighted basis
function (EWBF) estimator by providing considerable
complexity savings. RIBF is superior to the Gradient-BF
and EWBF estimators by further reducing the mean square
parameter estimation error without using any correction
code. These result in significant advantages when applied to
wireless communications to reduce BER, SNR and channel
bandwidth requirements.

This paper is organized as follows: in section 2 the
existing BF (i.e. GBF and EWBF) estimators are reviewed.
In section 3, the new RIBF estimator and its frequency
adaptive version are derived. In section 4, computational
complexities of the different BF estimators are evaluated. In
section 5, simulation results compare the performance of the
proposed estimator with those of GBF and EWBEF. Finally,
in the last part, conclusions are drawn.

2. BASIS FUNCTION ESTIMATORS

The basis function set consist of the basis exponentials
{£1(5), fo(5)s0, fi(s),s €T}, where T, =[1,2,...,/] is the
expanding time analysis window. Each basis element is
given by

fis)=el, I=1..k 3)
These are linearly independent in the time frame 7, , if all the
frequency components differ, i.e., @ # @, fori # 1. The basis

function algorithm corresponds to the following forward-
time description of coefficient changes [4],

Q(s)ziaﬂfl(s), seT,, i=l..,n 4)
In vector form, Zbly making use of the Kronecker product,
(APPENDIX A), (4) can be written as follows

O(s)= (1,, f" (s)) a(s)=D(s)a(s) (5)
where 6(s) is the vector of periodically time varying system
coefficients, D(s)=1, ®f'(s), I, is n-by-n identity matrix,

n
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a a,,z,...,a,,k]T is the nk-by-1 vector of

a=[a,ay,,....ay,....a,,

unknown coefficients, and f(s) =[/,(s), f,(s),..., f; (s)]' is the

vector of basis functions. Using the Kronecker product, a
generalized regression vector can be written as
w(s) = |:u(s)fT (),u(s =DF (s),...,u(s —n + D" (s)]T =o(s) ®F(s)
The system equation in (1) can be stated as follows
W)=y G)a+v(s), seT, (6)
It is clear that the basis functions method is based on
an explicit model of parameter variation. The parameter
trajectory is approximated by a linear combination of known
time-functions called the basis functions. The generalized
regression vector in (6) demonstrates that the problem of
identification of a linear time-varying system of order n is
converted to a problem of coefficient estimation of a linear
time-invariant system of order nk.

2.1. Exponentially Weighted Basis Function (EWBF)
Estimator

The method of weighted least squares has the ability to track
small variations due to its finite memory property. Using the
exponentially weighted least squares method, we can get the
following estimate of @ [2]:

— 2 —
() = argngnzlli | We—i)—y' (- z')a| =(R'0) ')
t=0
where

-1
R(0) =Y Aw(t—iw" (1-i)= AR =D +yO)y" (1)
t=0

-1 . )
s() =Y Ay —iw (t—i)=2s(t =)+ y(O)w" (1)
t=0
where A is the forgetting factor, usually close and smaller
than one, R(¢) is the nk-by-nk input correlation matrix, and

Q)

®)

s(¥)is the (mk-by-I) cross-correlation vector between the
desired response y(¢) and the input vector w(z) .
Applying the matrix inversion lemma to (8), one arrives to

the EWBF algorithm (9) [5], which recursively estimates 9.
0 =D(a()
a)y=a-1)+K ()e@)
() =y -y @)ae-1

w(1) = @) ®f(7)
£(t)= Af(1—1)

K() = I:[(t —Dy (1)
A+y  (OP@-Dy @)

Pit)=21" [P(x )= K@y ()Pt - 1)]

where A = diag{ej“" ey @™ } , and P(()=R7'(r). In the WLS

(€))

recursive algorithms, to avoid inversion of the correlation
matrix R(¢) at the initial phase of the estimation, we choose
the following initial condition:



a(0)=0,P(0) =11,
where771s a large positive constant number, which is a
standard initialization for all EWLS-type algorithms [1].

2.1. Gradient-Basis Function (GBF) Estimator

It is well known that EWLS type algorithms such as EWBF,
converge fast, but they are very demanding in terms of
computational complexity. However, in contrast, the
stochastic gradient algorithm is simple while both of them
have similar parameter tracking capabilities. Therefore,
using the Gradient method, we can estimate the parameter
vector @(¢) , by minimizing the following error term:

(1) =argmin £{y) -y (0@l . (10)

The GBF algorithm (11) can be obtained by replacing the
inverse correlation matrix P in EWBF estimator, which
requires (nk-by-nk) matrix updating at each iteration, with
the scalar step size x>0 [5]:

6 =D()a()

a()=a 1)+ (1))

w(1) =) ®1f(1)

£(t)= Af(t—1)

)=y -y @O)ae-1.

an

3. RECURSIVE INVERSE BF (RIBF) ESTIMATOR

The newly proposed Recursive Inverse (RI) algorithm has
been applied successfully in many signal processing areas
such as image processing [6], ALE [7], and channel
equalization. In this section, we propose the new Recursive
Inverse Basis Function (RIBF) estimator and its adaptive-
frequency version based on RI and the Gradient estimator
approach.

3.1. RIBF-Estimator

Solving the Wiener-Hopf equation [1] leads to an optimum
solution for the system coefficients given by
a@) =R ()s(r). (12)
As the filter coefficients vector is updated, the solution
of (12) is required at each iteration. Furthermore, there is a
condition for the autocorrelation matrix to be nonsingular at
each iteration [1]. Further, the Wiener-Hopf equation can be
solved iteratively at each time step & leading to [7]:

G, (1) =[T- 4RO, (1) + s (Ds(0). (13)
where u satisfy the convergence criteria [1]
2
H (14)

<——m.
Aax (R(2))
Considering the expectation of the estimated version of
the autocorrelation matrix in (8)
R(t)=AR(t-1)+R,,. (15)
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is  obtained  whereR,, = E{y/(t)t//T(t)} ,R(1) = E{R()}

.Solving the difference equation (15) yields

= 1-A

R(t):mRWW' (16)
Considering the maximum value, when ¢ — «

= 1

R(OO) IERW’. (17)

Eq. (16) states that the eigenvalues of the estimated
correlation matrix R(¢) increase exponentially as(1-1"),
with a maximum limit(1-4)"' times that of the original
correlation matrix. Since the step-size uis restricted to
satisfy (14) we get

2(1-2)

U<————=y (18)

max
RW )

(
max

The former equation shows that the step-size u takes
values which are much smaller than that required in (14). It
would be more convenient to replace the step size with a

variable one so that

2 1 2(1-2)
t = . 19
O R RO) (1—1’)(Ammw>] (19
Equivalently,
Himax — Hy 2
ey < e = 0 (20)

where g, < t,,, - It’s clear in the steepest descent update

equation (13) that there is a high complexity cost. Replacing
the step-size constant with the variable one leads to only one
iteration at each time step to be efficient [7]. Hence, the
final RIBF algorithm becomes

8=D1)a()
_ My
u) = T
a(t)=[1,, — u(OR@) ] @ —1)+ p(1)s(t)
()= ®1f(1) (21
£(t) = Af(t 1)

R(t) = AR - D) +y(Oy" (1)
s(t)=As(t =)+ Oy’ (t)

3.2. Frequency-Adaptive RIBF-Estimator

The proposed equalization algorithms would not be
complete without a method for estimating and tracking the
slight changes of the Doppler frequencies. Although the BF
estimators are robust to small local changes in frequencies
around known specified values, they fail to identify the
system properly in the presence of a frequency drift [2].

Therefore, we adopt a simple gradient search strategy,
which is proposed in [5], to derive the frequency-adaptive
version of the RIBF algorithm. Let the gradient be

J(t,0)= %|e(t,w)|2 : (22)



where w:[a)l,...,a)k]T are the instantaneous frequencies to
be tracked. A simple gradient algorithm which minimizes
(22) can be stated as

ot +1) = a(t) - 1VJ (a(0)) (23)
where VJ(@(t)) denotes the gradient of J(¢,w) with respect to
o, evaluated atw(f), andu>0 is a small adaptation
constant. In the case of frequency estimation, a modification

in the general regression vector and the estimated
parameters is needed in the form of arranging them

according to their respective different frequency
components (@,,...,®; ).
Leta, = a... .,a,,,]r be the vector of system

coefficients corresponding to a particular frequency o, .
Similarly, lety,(r) = @(t)e’™ be the generalized regression

vector that corresponds to the /th frequency component.
Accordingly, the error will be given as

50 = v - SuT OG- = yO -y 0@ -1 (24)
where -
o) =[0] Ol 0] . G- =[6] ().....47 ()]
Therefore,

ACGIE

T

aJ(t,w) |
day (1)

=Re{ je(t)e " (e (t - 1)}
=tm{&" (W7 (6] (1 1)}

where y,(t) = f;(D@(1),  fi(t)=e"" fi(t-1)

The number and the values of system frequencies have
to be initialized properly in order to avoid divergence of the
frequency adaptive BF-estimators. In channel identification,
the known (training) part can be employed for this purpose.
The angular frequencies of the periodically-varying system
can be initialized based on the analysis of higher order
input/output signal statistics (these are further described in
[3], [5]) or using the method of sliding window least squares
estimates of system coefficients [8].

4. COMPUTAIONAL COMPLEXITY

Table (1) illustrates a comparison of the computational
complexity for all the estimators that have been described.
The computational complexity stands for the number of
complex multiply/add operations per sampling time. In the
evaluation, we considered the fact that some of the matrices
involved are Hermitian (i.e. P andR ), hence, only their
upper (lower) triangular parts have to be updated.

The proposed RIBF-algorithms have a clear
computational advantage over the EWBF-estimator. It
reduces the complexity by kn(kn —1) multiply/add operations.
Furthermore, it also has the capability to converge to smaller
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Table 1: Comparison of Computational Complexity of Different BF-
Algorithms

Algorithm Complexity
EWBF 2(kn)* + 6kn+k
GBF 4n+k+1
RIBF (kn)* + Thkn + k

error values in terms of the mean square error (MSE),
shown in the simulation section. Interestingly, despite this
significant reduction in the proposed RIBF estimator, more
reduction may be achieved, if we approximate the
autocorrelation matrix as a Toeplitz matrix.

The Gradient estimator has the least computational
complexity over all the others as is clear from Table 1.
However, the price paid for reduced complexity of gradient
algorithms is their initial slow convergence.

5. SIMULATION RESULTS

The test case, adopted from [2] and [5], involve a
periodically time-varying channel as in (1) and (2). There
are two channel taps (coefficients, n=2). Usually, the
channel coefficient’s number is a small number that depends
on the transmission-channel’s memory. Each channel-tap is
equal to the linear combination of three basis functions
(number of dispersive paths, k&=3), given by:

[ =110 = ej<2zr/rz)z’f3(t) _ /AT
where 7, =120 and 7, = 200 sample periods. These numbers

are chosen to be close to the real values meant for the carrier
frequency f, =900 MHz, a bit rate around 20 kbit/s, and a

vehicle moving at 100 km/h. The input signal is assumed to
be 4-QAM (generated asu(f)=+1+ j with variance o> =2).

The received signal 8 is corrupted with AWGN (02 =04373

). Consequently, the received signal has an average SNR
equal to 15 dB. Fig.1 shows the development of the mean
square parameter estimation error (ensemble average over
200 realizations) for the EWBF algorithm in (9), the GBF
algorithm in (11), and the proposed RIBF estimator
summarized in (21). All of the results in Fig.1 are for a fixed
forgetting factor (41 =0.99) corresponding to an estimation
memory equal to approximately (58) samples. Also, the step
size (adaptation constant) for the gradient algorithm was set
to #=0.00572; such a value has misadjustment equivalent
in the steady state to the other BF’s misadjustments), i.e., all
the filters approximately have the same memory. Fig.1
demonstrates clearly the advantages of the RIBF estimator

in terms of accuracy (by reaching MSE values for different
step sizes ( 4, ). The RIBF estimator outperforms EWBF by

about 8 dB (at x,=0.00002) and GBF by 12 dB. Even

though, the estimators converge to the steady state MSE
value at the same time ¢ = 200, RIBF has a further reduction
of the MSE about 1.3 dB over EWBF and 1.55 dB over the
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Fig.1: Comparison of Mean Square Parameter Estimation Error for
Three Estimation Algorithms; Gradient-BF, EWBF and RIBF.

Gradient-BF estimators. With the significant reduction in
MSE, combined with low computational complexity, RIBF
promises low BER without using any error correction code.
Fig. 2 illustrates the tracking frequency capabilities of
the developed RIBF estimator. The simulation settings were
exactly the same as in the previous example, except that the
adaptation constant of the gradient search algorithm is set to
be (£#=0.00035) and the other parameters of RIBF are set

as(1=0.99, 4, =23x10"°). The frequency drift starts at
=800 after the estimator has reached its steady-state.

6. CONCLUSIONS

The problem of identification and tracking of periodically
varying systems has been considered. The classical basis
function algorithms which were used to estimate and track
time-varying coefficients in such systems have good
tracking performance, yet they are computationally
demanding. We have proposed a new recursive algorithm
RIBF which outperforms the classical basis function
schemes in terms of complexity reduction and tracking
performance. It is superior to EWBF by reducing the
complexity by kin(kn—1) multiply/add operations and it
shows further reduction in the mean square parameter
estimation error by 8 dB. Furthermore, an adaptive-
frequency version of the proposed algorithm was derived by
employing a simple gradient search strategy.

APPENDIX A
The Kronecker product X ®Y[imx jn] of two matrices
X[ix jland ¥[mxn] is defined as

x Y - x Y
XQ®Y oo

0.041- Estimated i

True

Angular (Doppler) frequencies

-0.02 L L N L T T
600 800 1000 1200 1400 1600 1800
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Fig. 2: Adaptive Frequency-RIBF Estimator Response, True
Frequencies (dotted lines) and Their Estimates (solid lines).
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