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ABSTRACT

We propose a supervised learning based method for image
segmentation. The method is based on feeding artificial fea-
tures to a framework of logistic regression classifier with ℓ1
norm regularization and Markov Random Field prior, which
has been studied, e.g., in hyperspectral image segmenta-
tion. The novelty of our approach stems from the use of a
generic artificial feature set and the embedded feature se-
lection property of the sparse logistic regression framework,
which avoids application specific feature engineering. The
proposed method generates a large set of artificial features
and passes them to a ℓ1 regularized logistic regression classi-
fier. Finally, a spatial prior imposes additional homogeneity
to the classification result. We study the performance of the
proposed method for two application cases, and show that the
segmentation results are accurate even with simple models
with high degree of sparsity.

Index Terms— Logistic regression, regularization, seg-
mentation, classification, object detection, graph cut

1. INTRODUCTION

The approach for solving segmentation and detection prob-
lems in image analysis is typically very application oriented,
and the designer is an expert with image analysis techniques.
However, often the end user of the image analysis tool is not
experienced in the field, and manual tuning becomes difficult.
In such cases, supervised image segmentation may offer an
alternative, where the non-expert end user may point a num-
ber of foreground and background areas, and the software au-
tomatically learns to separate them. However, in this frame-
work, the use of a large collection of image analysis tools and
selection among them may be difficult.

In this paper, we propose to use a linear classifier with
sparse coefficient vector together with a Markov Random
Field (MRF) spatial prior for the segmentation task. The
inputs to the classifier are constructed by applying a collec-
tion of filters with various parameters (e.g., filtering window
size). This way the training stage has a large amount of pos-
sible input filters, from which the sparse classifier can choose
the most relevant ones for the particular classification task.
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However, the actual segmentation does not become overly
complex despite a possibly large collection of filters, because
those features discarded in the training stage are not neces-
sary to be calculated in the actual segmentation. Importantly,
the feature set is designed to be generic, enabling the use of
the framework without building case-specific feature sets.

Our approach is based on ℓ1-penalized logistic regression
classifier [1], which combines feature selection and classifi-
cation into a single penalized maximum likelihood optimiza-
tion problem, thus, embedding the feature selection problem
into the classifier design. In the case of segmentation, the
input features are generated by applying various spatial filter-
ing operations to the images, and the output is an estimate of
the probability of a pixel to belong to foreground. However,
the estimates are pixel-wise and assume statistical indepen-
dence between neighboring pixels, but the assumption does
not hold in real-world images. Thus, we will take advantage
of the accurate estimates of class probabilities by integrating
the contextual information from neighboring pixels through a
spatial prior: the Markov Random Field model.

There exists a lot of literature on design and use of image
filters as feature generators for segmentation [2] including the
design of sparse features [3]. On the other hand, the design of
sparse classifiers is a widely studied area [4], which has also
been applied in pixel classification with hyperspectral images
[5] and for backscatter image segmentation [6]. Of the two
latter studies, the first inputs multichannel images acquired
at different wavelengths directly with no filtering, while the
second uses a fixed collection of filters, but selects the most
relevant ones with simple forward selection. Moreover, the
latter paper does not estimate the class probabilities, which
have a significant role in our framework. Thus, to the best of
our knowledge, the two domains of feature generation with a
large collection of filters and sparse classifier design have not
been integrated together.

The non-sparse approaches to supervised classification
[7] typically have a rigid classification structure with a small
number of fixed features generated by a filter bank, and are
thus difficult to modify by a non-expert to incorporate other
features than those specified in the implementation. The fa-
mous Viola-Jones framework [8] is related to our approach,
but the features are limited to have a fixed structure: only
sum-of-blocks-like features are the only ones allowed.
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2. SUPERVISED SEGMENTATION FRAMEWORK

The proposed segmentation framework consists of three
stages: first a large pool of features is generated by ap-
plying a large set of manually defined filters with a range
of parameters (see e.g., Table 1). At the training stage, we
design a sparse logistic regression classifier to determine the
class of each pixel. The design is based on training data col-
lected by the user by pointing at a number of foreground and
background areas. However, in the applications considered
in the experiments, the foreground objects are point-like, and
thus the background samples can be collected automatically
from areas far enough from the foreground areas.

In the actual classification stage, the selected features
are calculated, and the classifier predicts the pixelwise class
membership probabilities. These are integrated with the con-
textual information through the MRF model.

2.1. Feature generation

The original data is in the form of 2D images. However,
the image intensities alone do not necessarily form informa-
tive enough feature set for supervised object detection. Thus,
we apply a number of filtering and transform operations for
the image intensities in order to build a higher dimensional
feature set. A large set of features is particularly desired in
our case since the logistic regression framework, described
in Section 2.2, is able to efficiently handle cases with high di-
mensional feature space. Moreover, by generating a large fea-
ture set instead of strictly optimized feature(s) for a specific
purpose and leaving the task of feature selection to the clas-
sification stage, we aim at a segmentation framework which
has the potential to generalize better to different applications.

Our feature set is mainly built by spatial filtering opera-
tions with multiple kernel sizes. Although the set of filters
can be selected arbitrarily, e.g., taking into account problem
specific knowledge, we will use the following set of filters
as feature generators in the experiments of this paper. The
operations include low-pass filtering, unsharp masking, mor-
phological and edge enhancing filtering, all of which incor-
porate spatial information using local windows with varing
kernel sizes. In addition, we use the wavelet decomposition
[9] where the signal is represented as a multiscale decom-
position of à trous wavelet coefficients, and the local binary
patterns [10] for producing features. The features and param-
eter ranges are listed in Table 1, and the parameter ranges are
given using the notation [min:step:max].

2.2. Regularized Logistic Regression Classifier

The feature generation produces a large set of redundant and
highly correlated features. The question is now, how to find
a good subset of complementary features enabling an accu-
rate classification result. This problem of feature selection

Table 1. Features and parameter ranges used in the experi-
ments. In total, 106 features were used in this study but the
framework allows to extend the feature list without changes.

Feature Parameter Values
Gaussian lpf kernel width σ 3:5:83
Unsharp masking kernel width σ 3:5:83
Morphological top-hat kernel size 3:5:33
Morphological bottom-hat kernel size 3:5:83
Masking with h-maxima transform h 3:5:83
Local binary patterns
Edge enhancement kernel size 3:5:83
Wavelet decomposition depth layer 1,2,3

has been widely studied, and one of the most interesting di-
rections is the use of regularization for embedded feature se-
lection. Probably the most famous method is the LASSO [1],
which uses the ℓ1 penalty to regularize the least squares so-
lution of a regression problem. The LASSO has later been
extended to solve classification problems through the logistic
link function, which results in the logistic regression classi-
fier [4], defined as follows.

Given a p-dimensional feature vector xi ∈ Rp corre-
sponding to the ith pixel in the analyzed image, logistic
regression models the probability p(ci|xi) of the pixel i be-
longing to the foreground as1

p(ci|xi) =
1

1 + exp(β0 + βTxi)
. (1)

The model parameters β0 and β = (β1, β2, . . . , βp)
T are es-

timated by maximizing the ℓ1-penalized log-likelihood∑
xi∈F

log p(ci|xi) +
∑
xi∈B

log(1− p(ci|xi))− λ||β||1, (2)

where F and B are the training sets of foreground and back-
ground pixels, respectively [11]. The parameter λ > 0 con-
trols the strength of the regularization and thus the sparsity
of the result, and is selected by cross-validation. The model
parameters β0 and β = (β1, β2, . . . , βp)

T can be efficiently
estimated by a coordinate descent algorithm [4].

2.3. MAP Segmentation using Graph Cuts

As described in Equation (1), the model estimates the prob-
ability p(ci|xi) of the ith pixel belonging to the foreground
given the feature vector xi. It is tempting to use the probabil-
ity information for post-filtering and increasing the coherence
between neighboring pixels. This can be done in an optimal
manner through the MRF spatial prior.

Markov Random Fields were first proposed for vision ap-
plications by Geman and Geman [12]. The MRF assumption

1We denote both the discrete probability Pr(C = ci|X = xi) and the
continuous pdf p(x = xi|C = ci) with the short notations p(ci|xi) and
p(xi|ci), unless the context is ambiguous.
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states that each pixel class ci (i.e., foreground / background)
depends only on its neighbors as defined by the neighborhood
Ni. The idea of using graphs for solving the maximum a
posteriori configuration with MRF prior was originally dis-
covered by Greig et al. [13], and a fast implementation was
proposed by Boykov and Kolmogorov [14]. This so called
graph cut method solves the equivalent problem of splitting
a graph into two disconnected parts, such that the foreground
and background nodes are in different partitions, and it is ap-
plicable for a large set of MRF’s. An MRF that can be solved
by finding a graph cut has the following form for the proba-
bility of a labeling c of the set of all pixels P:

p(c) ∝ exp

−
∑
i∈P

∑
j∈Ni

Vi,j(ci, cj)

 ,

where the clique potential Vi,j(ci, cj) essentially determines
the cost of giving different labels to neighporing pixels. Our
definition of clique potential is equivalent to that used by [5]
for hyperspectral image segmentation, which gives a constant
penalty γ > 0 for each pair of neighbors with different labels.

The smoothing effect of the MRF prior can be seen from
the derived formulation for the prior p(c), [5]:

p(c) ∝ exp

γ
∑

{i,j}∈C

δ(ci − cj)

 , (3)

where δ(·) is the unit impulse function. In the above formula,
equal labels ci and cj for neighboring pixels i, j clearly in-
crease the value of the prior, thus favoring segmentations with
a large number of cliques C having the same class label.

The prior of Eq. (3) is integrated with the pixelwise lo-
gistic regression classifier as proposed in [5]. The problem
is that we would like to find the pixel labeling ĉ maximiz-
ing the posterior probability with the MRF prior, i.e., ĉ =
argmaxc p(x|c)p(c), with p(x|c) the likelihood of the data
with labels c and p(c) as defined in Eq. (3). However, lo-
gistic regression estimates posterior probabilities p(ci|xi) for
pixel i instead of the likelihood p(xi|ci). This is resolved by
using Bayes formula in the unusual direction [5]: p(xi|ci) =
p(ci|xi)p(xi)/p(ci), or if further assuming conditional inde-
pendence and discarding the constant term p(xi):

p(x|c) ∝
∏
i

p(ci|xi)

p(ci)
.

If we further assume equal class probabilities, the denomina-
tor can also be omitted. This way we will end up with the
definition of the MAP segmentation:

ĉ = argmax
c

p(x|c)p(c)

= argmax
c

∑
i

− log p(ci|xi) + β
∑

{i,j}∈C

δ(ci − cj)

 ,

whose exact minimization can be done using the graph cut.

3. EXPERIMENTAL RESULTS

We study the performance of the proposed method for two
cases: segmentation of subcellular objects [15] and segmen-
tation of connection pads in printed electronics [16]. These
cases were selected because they represent challenging seg-
mentation cases where the supervised framework, enabling
automated analysis through incorporating expert knowledge
in the training phase, would be beneficial. In the first case,
we show how the sparse logistic regression reduces the num-
ber of features in the model, and the second case highlights
the benefit of generating MAP segmentation result from the
regression probabilities by using spatial priors.

3.1. Subcellular spot detection from simulated images

As the first dataset we use simulated images of cell popu-
lations. The main benefit of using simulated images stems
from the availability of ground truth information of the num-
ber and locations of subcellular objects. The simulated im-
age set, publicly available at http:\\www.cs.tut.fi\
sgn\csb\simcep\benchmark contains 20 images with
a fixed number of cells and subcellular objects per cell. A
part of a simulated image is shown in Fig. 1(a), the proba-
bility values given by the logreg model as a heatmap in Fig.
1(b), and the result after classification in Fig. 1(c).

Coordinates for positive training samples were given by
the user and negative samples were randomly picked from the
input image with minimum distance to any positive sample at
least 10 pixels. Here, 70 positive samples were given and the
number of negative samples was set to be 10× that of posi-
tive samples. Using these 770 training samples each having
106 features, a sparse solution with only five nonzero feature
weights was obtained. The simplicity of the model can be
seen from the actual formula for the probability of the fore-
ground class for the pixel with coordinates (i, j):

p(ci,j |xi,j) =
1

1 + ϵ(i, j)
, (4)

with

ϵ(i, j) = exp(−5.23 + 0.04H63(i, j) + 0.003H68(i, j)

+ 0.0007E8(i, j) + 0.011T8(i, j) + 0.30W3(i, j)),

where H denotes the result of h-maxima masking, T top-hat
filtering, E edge enhancement and W wavelet decomposition
at pixel (i, j) and the subscripts denote the parameter values
(see Table 1).

Since the ground truth information is available for simu-
lated images, we can use direct measures of detection accu-
racy. Thus, we determine the number of true positive (tp),
false positive (fp), and false negative (fn) detections, as well
as the precision (p = tp/(tp+ fp)) and recall (r = tp/(tp+
fn)). Finally, using these measures the F-score is defined as
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Fig. 1. (a) Close-up of a simulated image. (b) Probability
values by LR. (c) Classification result.

Table 2. Subcellular object detection results for simulated
images. The results are averaged over the set of test images.

tp fp fn p r F-score
121.11 17.26 20.00 0.876 0.858 0.867

Fscore = 2pr/(p + r). The results for simulated images are
given in Tab. 2. The values are averaged over a set of 19 test
images - one of the 20 images is used for training and in order
to keep the test data independent it is excluded from the test
set. For comparison, the same image set was used for evaluat-
ing unsupervised spot detection algorithms in [15], and based
on the results reported for simulated images, the supervised
framework outperforms the methods used in the earlier study.

3.2. Detection of Connection Pads in Printed Electronics

As the second example case, we consider segmentation of the
connection pads of integrated circuits (IC) on an electronics
module. Such an application is used, e.g., as a preprocess-
ing step in printed electronics, where the components need to
be detected from the image in order to be able to print the
connection layer on the right location on top of the module.
In such an application, the connection pads are considered
the only dimensionally accurate features in the images, which
makes segmentation a proper approach for this problem [16].

(a) Training image. (b) Close-up.

Fig. 2. An electronics module with 4 ICs used in training a
classifier for IC connection pad segmentation. The positive
and negative training pixels are shown with blue and red dots,
respectively. A closeup of a corner of one of the ICs shows
connection pads located on the sides of the IC.

Table 3. Connection pad detection results. The results are
averaged over the 2 CV folds.

Method tp fp fn p r F-score
LR-MRF 24484 87133 460 0.219 0.982 0.359

LR 24683 131573 261 0.158 0.990 0.272
SVM 24498 154422 447 0.137 0.982 0.240

10-NN 24566 156066 378 0.136 0.985 0.239

We use 12 Mpix color images taken from 4 IC modules
as shown in Figure 2 (a). There are a total of 409 connection
pads located at the sides of each IC. A ground truth segmen-
tation for the whole image has been acquired by manually
fitting the connection pad layout as given in the design data
on top of the image and annotating each pixel at most 30 µm
away from any connection pad as positive and the rest of the
pixels as negative samples. The amount of training data per
image has then been reduced by randomly picking 1000 pos-
itive and 2000 negative training samples as indicated by the
blue and red dots, respectively. The actual connection pads
can be seen in a closeup of one of the ICs in Figure 2 (b).

In this example, 4 different supervised methods are tested
in the segmentation of the connection pads. In addition to the
proposed regularized logistic regression combined with the
graph cut post processing, also a regularized logistic regres-
sion classifier without graph cut as well as support vector ma-
chine (SVM) and a 10 nearest neighbors (10-NN) classifiers
are tested. The features used are those listed in Table 1. In the
case of SVM and 10-NN, an additional sequential forward
selection step is used to reduce the amount of intentionally
redundant features. In SVM, we use linear kernel in order
to avoid optimizing kernel parameters. The resulting model
is exactly the same as in logistic regression. In 10-NN, ℓ1
norm is used as the distance metric and the number of nearest
neighbors is selected through experimenting. In all the meth-
ods, the features are first normalized to unit variance.

The performance of the different classifiers was assessed
by using a simple 2-fold cross-validation (CV) such that the
classifiers were trained with a single module image similar to
that shown in Figure 2 (a) and tested with another one. The re-
sults are given in Table 3. There are plenty of false positives
in each case, which is due the high amount of small bright
spots other than connection pads in the images. Logistic re-
gression seems to give slightly less false positives than SVM
and 10-NN resulting in better precision and F-score. Using
MRF together with the class probabilities estimated by the
logistic regression remarkably reduces the number of false
positives giving it by far the most accurate result. Figure 3
shows the part of the segmentation results that corresponds to
Figure 2 (b).
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Fig. 3. The segmentation result corresponding to the closeup seen in Figure 2 (b) as given by different classification methods.
(a) LR-MRF, (b) LR, (c) SVM, (d) 10-NN.

4. CONCLUSIONS

In this paper a framework for segmenting images using sparse
logistic regression based classification was proposed. The
framework calculates a large set of features with multiple sup-
port areas from the images and feeds them into the regular-
ized logistic regression process, which weights the features
based on their usefulness for the classification task, giving a
sparse solution where non-informative features are excluded
from the model. The class probabilities given by the logistic
regression model together with spatial priors may be further
processed by using graph cuts for generating a MAP segmen-
tation result. In this case we have used detection of subcellu-
lar objects and connector pads as application cases to demon-
strate the framework. The results for both simulated and real
images confirm that the logistic regression based classifica-
tion is a powerful tool for segmentation of small low contrast
spots from images. Further studies will be taken in order to
explore the full potential of the proposed framework.
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