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ABSTRACT

This paper proposes an automatic measurement algorithm
for calculating statistics of pulp fiber lengths and curvature.
The fibers are extracted from digital images, and a parametric
model is fit to the extracted objects. The modeling approach
improves the robustness of the detection and enables connect-
ing broken fiber parts into full length curves. The developed
algorithm is compared to an alternative method, and con-
cluded to yield similar results while providing additional
features, such as curvature estimates, of the detected fibers.

Index Terms— Pulp, Fiber, Image Analysis, Length Dis-
tribution, Image Modeling

1. INTRODUCTION

Measurement of the properties of pulp fibers is widely used in
paper making industry for improving process efficiency. By
far the most common measurement method is based on off-
line assessment, where samples of the pulp material are first
manually acquired at constant time points, and processed for
analysis by scanning. Subsequently, the sample is measured
for different properties either by hand, or with two or three
dimensional automated image analysis, the methods of which
have been thoroughly studied (see, e.g., [1, 2, 3,4, 5, 6]). The
off-line nature of the measurement allows for high accuracy
data, but results in low speed processing.

This paper considers automatic image analysis for in-line
measurements, where the target images are automatically ac-
quired from pulp-fiber solution [7] using rapid laser flash il-
lumination. The benefits of the in-line approach are evident:
the processing is faster, the feedback is more responsive, the
possibility of a sampling error is eliminated, and it requires
a minimal amount of manual labor. On the other hand, the
produced images have low signal to noise ratio, and the ex-
tent of fiber overlap becomes uncontrollable, since no manual
preprocessing of the sample is performed.

The approach described in this paper relies on modeling
the fibers using polynomial curves. There exists vast literature
on curve fitting for images [1, 2], and it has previously been
used for cotton fiber modeling [8]. However, the curved ap-
pearance of cotton fibers required piecewise polynomials and
designated control points, unlike our more straightforward ap-
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proach. Methods for fiber measurements also exist [9], but a
polynomial model for the fiber appearance enables analytical
calculation of many quantities, such as the curvature. The in-
troduced method allows for efficient detection of the fibers in
noisy images, and can also be used as a tool for joining fiber
parts that have been falsely broken due to low quality input
images.

2. FIBER SEGMENTATION

A typical input image after histogram equalization in shown
in Figure 2 (a). The example illustrates the challenges of in-
line image analysis: the image is noisy, fibers overlap, and
it is difficult even for a human observer to reliably separate
individual fibers. Figure 1 presents the framework of the pro-
posed system, consisting of five functional blocks. The pro-
cedure starts with an optional preprocessing step. The second
step, segmentation, extracts the fibers from the background.
Thirdly, resulting objects are filtered by their shape. Then,
skeletonization and subsequent pruning is applied to thin the
fibers and remove short erroneous branches. Finally, a para-
metric model is fit to the skeleton data, after which required
features can be measured from the resulting fibers.

The extraction of the fiber foreground areas from the
darker background consists of two steps: denoising and
segmentation step. Preprocessing enhances the image data
allowing for more reliable segmentation. However, the re-
quired procedure depends on various conditions, such as the
imaging hardware, exposure time, etc., which essentially de-
termine the required filtering operations. In our case, the
acquired images appear as shown in the Figure 2 (a). The
noisy appearance of the image is obvious, and our choice
of pre-processing filters consists of a combination of a me-
dian filter (for filtering the impulsive noise) and a Gaussian
lowpass filter (for smoothing the additive noise.

The performance of the segmentation step is critical to
the performance of the subsequent stages of the method. Out
method is based on P-tile thresholding due to its simplicity
and adjustability. We did experiment with more elaborate
methods including the Otsu threshold [10] and energy min-
imization with the graph cuts [11], but they did not seem to
improve the overall perfomance. This is probably due to the
subsequent robust fiber modeling stage that makes a smooth
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Fig. 1: Flowchart of proposed system.

Fig. 2: Fiber detection example. (a): Typical fiber image after histogram equalization, (b): segmentation result superimposed

over the original, (c): pruned skeleton of segmentation result.

segmentation result obsolete. The segmentation procedure for
separating the fibers from the background was performed in
the following way. First, we applied the standard top-hat fil-
ter highlighting local maxima to emphasize narrow objects,
such as the fiber pixels. Second, we used adaptive P-tile-
thresholding to set P percent of pixels as background, sepa-
rating fiber pixels from the background. This adaptive algo-
rithm proceeds iteratively as follows:

1. Threshold the image using P-tile-thresholding with
P = 80%.

2. Measure the ratio between foreground and background
pixels outside the round area of interest.

3. If the ratio exceeds a constant C, increase P by a pre-
defined value, and return to step 1. Otherwise, accept
the thresholding result.

This iterative method successfully locates the fiber pixels,
since there should be only a few foreground pixels outside
the area of interest. Therefore, when the value of parame-
ter P is too small, the thresholding tends to overestimate the
foreground area, and the value of P must be set higher. This
adaptation was required since the number of the fibers (fore-
ground pixels) varied greatly from image to image.

After global thresholding, excess objects are often present
in the binarized images. Unlike true large objects, these are
caused by noise, and can be removed based on their size. In
our test images, 15 pixels was found suitable limit for min-
imum object size, but an optimal limit has to be determined
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experimentally. Figure 2 (b) shows the segmentation result
superimposed on the original histogram equalized image.

The ideal representation of a fiber is a thin rigid curve.
The segmentation, however, produces only a binary map of
fiber area, but this map can be transformed into a set of curves
by skeletonization. Again due to noise, the skeletonized im-
age contains a number of extra branches correctable by prun-
ing. The pruning simply removes branches according to cer-
tain criteria, for example the branch length (5 pixels in our
data), the limit of which can only be obtained by experiment.
This pruned skeleton is illustrated in Figure 2 (c).

3. FIBER MODELING

After skeletonization, the individual fibers have to be ex-
tracted. In our approach, we model the fiber structure with
a polynomial parametric model, which is straightforward to
implement, but simultaneously offers flexibility to represent
various fiber shapes. The modeling starts by separating the
fiber mesh at each intersection point. This ensures that the
shape of each fiber segment is simple enough to be described
with a low order polynomial.

The polynomial models both horizontal and vertical
coordinates as a polynomial of a real valued parameter
t € [0,1] as x(t) (z(t),y(t)) € R% More specifi-
cally, suppose that we have labeled a connected segment of
the fiber skeleton that consists of N pixels with coordinates
(z1,11), (x2,9Y2),. .., (N,yn). Then the parametric linear
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Fig. 3: An example of sorting the skeleton pixels by projec-
tion.
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The vector e € RY is the residual noise term that the model
does not explain.

In order to fit the model into the fiber segment data, the
discrete parameter values tg,t1,...,txy_1 have to be defined
for each data point. A natural choice is to associate the end-
points into the values 1 = 0 and ¢t = 1, but also the rest
of the points require an association. Literature proposes to
treat ¢ as another unknown parameter and estimate the val-
ues from the data [2], or to traverse the chain of pixels and
increase the value according to the distance to the previous
point [1]. The latter approach is more straightforward and
more suitable for our problem. However, as we later consider
joining non-connected fibers, the order of traversing through
all points may not be obvious in all cases. Alternatively, we
can exploit the simplicity of the structure of the fibers by pro-
jecting the pixels onto the line passing through its endpoints
as Figure 3 illustrates. After mapping the points into the one-
dimensional subspace, a suitable value ¢;, € [0,1] for each
k = 1,2,..., N can be determined according to the linear
distance from the two endpoints.

The solution of the model parameter matrix @ can be
found by the standard least squares (LS) approach (see e.g.,
[12]): & = (HTH) 'H”x, from which we get the actual
model for the fiber segment under consideration: x = H6.
An example of a second order LS model of a fiber is shown
in Figure 4. Note that it is straightforward to extend the LS
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Fig. 4: The result of fitting a second order least squares model
into the fiber segment of Figure 3. The dashed lines illustrate
how the fiber would be extrapolated in the catenation step.
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Fig. 5: The result of fitting a second order least squares model
with weights wy, = (1 — min(t, 1 — ;))'" into the fiber
segment of Figure 3.

framework into a weighted version, which can take, for ex-
ample, the curvature at ends of the fiber more efficiently into
account.

In some cases, the fiber endpoints tend to have a higher
curvature than the middle area. This can be compensated
by assigning a higher weight to the endpoints using weighted
least squares: @ = (HT WH)~'H” Wx. As an example, the
weight can be assigned by the rule: wy, = 1—min(tg, 1 —1tx),
for k = 1,2,..., N which is one minus the distance to the
nearest endpoint. The balance between endpoints and the cen-
ter can be adjusted by raising the weights into higher power.
An example of the second order fit with no weights is shown
in Figure 4, and the corresponding fit with weights w, =
(1 — min(tg, 1 — t%))"? is shown in Figure 5. The latter fig-
ure clearly gives more emphasis to the curvature near the end-
points.

Prior to fitting the model to the fiber segments, the original
skeleton mesh was cut at each crossing point. In addition, the
original segmentation produces components that have clearly
been cut incorrectly into parts. To correct for these errors,
fibers are connected by rejoining parts based on the polyno-
mial model. This procedure is the following.



Fig. 6: Model fitting. (a): Fitting the model to pruned skeleton, (b): final result after combining separate parts of the skeleton
mesh. (c): Result of manual (blue) segmentation overlaid on top of figure (b).

1. Select an end of a non-catenated fiber, which is closer
to an end of another fiber than a threshold T. If no
matching fiber ends are found, stop the algorithm. If
the selected fiber end is close to many other ends, pro-
ceed with all the fibers and select the best match for
catenation in step 6.

2. Extrapolate both fibers towards each other. Note that
the fiber model is defined with ¢ € [0, 1], and the ex-
trapolation is done with values ¢ < 0 or ¢ > 1, see
Figure 4.

3. Find a location where the extended fibers are closest
to the original endpoints of the original non-extended
fibers. Note that there is an analytical solution for the
minimal distance.

4. At the location found in the previous step: Calculate
tangent angles of both of the fibers from the polynomial
model.

5. Fit the model to the complete fiber (pixels of both
fibers). Calculate the fitting residual ||e]|.

6. Catenate the fibers if the error is less than a thresh-
old T, and the difference of the tangents is less than
a threshold T;.

7. Return to step one.

This procedure essentially joins fiber segments, whose
endpoints are close to each other and whose orientations near
the endpoints match. One run on the algorithm only catenates
fibers that have not been joined before, so if the input images
are very noisy with several gaps in many fibers, the procedure
can be repeated. The number of repetitions depends on the
application; we repeated the catenation twice for all images.
An example of the catenation process is shown in Figure 6.

4. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed method, we
manually annotated all fibers from ten test images similar to
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the one in Fig. 2 (a). In all, the images contain 211 annotated
fibers. The proposed method finds altogether 319 fibers from
the same images, and the excess ones are mostly shorter than
any of those annotated manually. The result for one of the
images is shown in Fig. 6 (c). The figure shows that espe-
cially longer segments are correctly recognized, and that the
differences are mainly with the short ones. However, due
to the nature of the measurement, manual annotation is also
very error-prone and requires subjective interpretation.

Despite the difficulties with the ground truth, the im-
portant thing for the application is not the correct segmen-
tation of individual fibers, but instead the length and cur-
vature distribution over a larger set of images. These are
shown for the ten test images in the histograms of Fig-
ure 7. The length of a fiber can now be calculated analyt-
ically from the polynomial model x(t) = (x(¢),y(t)) as
L(x) = fol V(@' (t))2 + (v/(t))? dt. The analytical represen-
tation allows also a precise calculation of the curvature, but
for the sake of comparison, we define it in the conventional
manner in paper industry, K = L(x)/||x(0) — x(1)]], i.e., as
the ratio of the curve length and the distance of its endpoints.

Instead of a thorough one-to-one comparison of fibers we
concentrate only on the statistical properties of the results of
the manual and automatic method. This is because an accu-
rate measure of sensitivity and specificity would require find-
ing a match between found fibers in the two results. Since the
matching is non-trivial and error-prone, we skip this analy-
sis. Moreover, the manufacturer is not interested in individual
fibers, but rather on the statistics on a longer period.

The histograms of Fig. 7 are very similar to each other
both in terms of both distributions. The most significant dif-
ference is in the length histogram, where the manual annota-
tion has significantly less fibers than the automatic one. How-
ever, this is probably partly due to human perception, which
tends to discard too small objects as noise.

In the length histogram, also a dashed vertical line is
shown. This is the estimate of mean fiber length obtained by
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Fig. 7: Histograms of length (top) and curvature (bottom) dis-
tributions. The dashed line in the upper plot is the result of the
traditional method [9] for the average fiber length.

a more traditional method [9], which estimates fiber lengths
as twice the ratio of the number of all foreground pixels to
the number of fiber endpoints (from the skeleton; 2 (c)). It
is clearly seen, that the standard method underestimates the
mean length of the fibers. This is mostly due to a large num-
ber of noisy short fiber segments in the skeleton, which our
method joins together. Moreover, the proposed method also
enables the estimation of fiber curvatures, which is of interest
and not possible to assess using the traditional method.

The average processing time on a modern PC is approxi-
mately 7 seconds per image. Although this is not strictly real
time and many frames are skipped, the method is still fast
enough to capture the essential changes in the statistics of the
process.

5. CONCLUSIONS

In this paper, we presented a method for pulp fiber detection
and measurements based on images taken in-line during pulp
manufacturing. The fibers overlap, and input images suffer
from heavy imaging noise, making simple thresholding based
analysis infeasible. By applying a model based approach after
preprocessing, we enabled reliable fiber detection and curva-
ture measurements. The mode represents each fiber as a para-
metric polynomial, which enables their analytical treatment.
The analytical properties are used for deciding which fiber
segments should be joined based on extrapolating the fitted
curves, and studying their tangent vectors.

Despite the difficulty of comparing the result with the
ground truth, we have shown that the statistics of the result
are close to those of manual annotation. The key differences
are in the length distribution, where manual annotation has
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fewer short fibers. However, this is largely due to inaccuracy
of the human segmentation with small fibers, which may be
indistinguishable from noise to human observer.
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