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ABSTRACT 
 
An unsupervised object extraction system capable of sepa-
rating animal images from background in natural scenes has 
been developed. Edges are detected from original images at 
multiple reduced resolutions and used to identify object 
contours. In order to determine the inside and the outside of 
an object, texture information is compactly represented us-
ing oriented edges and analyzed. The contour information 
and the texture information are integrated so that they com-
plement each other. As a result, the object region has been 
successfully extracted as is from the scene with a fairly-well 
defined boundary line. Simulation experiments were carried 
out on several natural images and promising performance 
has been demonstrated.  
 

Index Terms— Object extraction, Contour, Texture, 
Oriented edge, Natural images 
 

1. INTRODUCTION 
 
Development of intelligent image understanding systems is 
essential in a variety of applications such as robot vision, 
semantic indexing and description, image representation and 
compression, and so forth. Object extraction, in particular, 
plays an underlying role in implementing intermediate and 
high-level image processing tasks like object recognition 
and retrieval. 

A lot of works have been done on supervised object ex-
traction that requires various user inputs [1, 2]. It is still a 
challenging task to automatically distinguish an object from 
the background, although it is an easy task for human be-
ings. The unsupervised object extraction algorithm in [3] 
mainly relies on multi-scale Canny edge detection [4] and 
can neither deal with ambiguous object boundary nor handle 
complex background with texture. Contour delineation is 
proposed to give better object boundary mimicking the Ge-
stalt phenomenon of human eyes [5]. It delineates the most 
salient features in a scene as an object, but often undesirable 
results are obtained for images with salient background tex-
ture, because it produces false contours from the back-
ground. Gabor filters are utilized to analyze the texture dif-
ference between objects and background [6] of rice and 

bacteria images. Some other works apply center-surround 
divergence feature statistics [7] to detect the salient region 
or develop scale-based connected coherence tree[8] to ex-
tract the object region from natural scenes. Still, these 
methods neither produce exact object boundary, nor well 
handle complex background.  

In this work, an unsupervised object extraction system 
capable of separating animal images from various back-
grounds in natural scenes has been developed. Oriented 
edges are detected from original images at multiple reduced 
resolutions, which are used to delineate object contours. In 
order to discriminate an object from the background, we 
have used the texture information. Local images densely 
sampled from an input image are represented also using 
oriented edges based on the projected principal edge distri-
bution (PPED) algorithm [9], then analyzed by K-means 
clustering. Since high-level information is indispensable to 
carry out object extraction, we simply assumed that the ob-
ject is located centrally in the scene as in [10]. The delineat-
ed contours thus successfully identify boundary lines of the 
object, but several extra lines are delineated as well from the 
salient features existing in the background. On the other 
hand, the texture-based discrimination well separates the 
object area from the background area, while their bounda-
ries are too fuzzy to determine the boundary lines correctly. 
In this work, the two cues, the contour and texture, are inte-
grated complementarily to yield correct boundary lines and 
extract an object from the scene. Simulation experiments are 
carried out on several natural images and promising perfor-
mance has been demonstrated. 
 

2. OBJECT EXTRACTION ALGORITHM 
 
In this work, it is assumed that only one object is depicted in 
the scene and that the object is almost entirely included. 
This assumption allows us to regard the peripheral region of 
the image as the background.  
 
2.1. Contour delineation 
 
We first locate salient features by repeatedly reducing the 
image resolution to filter out less salient edge fragments, 
then add in boundary details by restoring the resolution. 
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Thus, our algorithm extracts the most salient features from 
the object image to form contours. 

A pyramid of reduced resolution images is first obtained 
by repeatedly shrinking the image to a quarter of its original 
size. To preserve the intensity contrast while suppressing 
textures simultaneously, a bilateral filter [11] is integrated 
into the "shrinking" process. Bilateral filter could enforce 
both geometric and photometric locality by combining do-
main and range filtering. Fig. 1(a) illustrates the implemen-
tation of "shrinking to a quarter". The pink 5×5 matrix is 
the domain of the bilateral filter. Blue pixels are the central 
points for bilateral filter calculation, which is equivalent to 
sampling one pixel out of each 2×2 region. Because we 
calculate the filter in a region of 5×5, we set the range sig-
ma of the bilateral filter as (5+1)/6=1, and the intensity do-
main sigma of the bilateral filter as (256+1)/6=42.8. An 
image pyramid example is shown in Fig. 1(b). 

 

 
(a) 

 
(b) 

Fig. 1. (a) Scheme of "shrinking". The sampled pixels (blue) 
are convolved with the bilateral filter in its 5×5 neighbor-
hood pixels (pink). (b) Image pyramid of original, 1/4 and 
1/16  resolutions. To improve the visibility, the pictures 
shown above are not correctly scaled. 

Then edge pyramid is calculated from the image pyra-
mid employing the globally determined threshold [12]. Gra-
dient is calculated at every pixel location as the summation 
of the magnitude of gradient values along horizontal and 
vertical directions. The gradient values are sorted, and a 
certain number of pixels of larger gradient values than oth-
ers are marked as edges. The number of pixels to be left as 
edges is specified by their percentage to the total number of 
pixels in the entire image (12.5% is used throughout this 
work). In the edge pyramid, edge maps (EMs) from smaller 
images contain less background or texture information. Be-
sides, fragmental lines in larger EMs tend to merge into 
continuous lines in smaller EMs, which reflect the connec-
tivity between adjacent fragments. (See the top string in Fig. 
2.)  

Object contour restoration is carried out by merging two 
adjacent scaled EMs in the edge pyramid (Fig. 2). The EM 
of 1/16 and the EM of 1/4 are utilized to produce the re-

stored EM of 1/4, the detailed procedure of which is ex-
plained in Fig. 3. The same procedure is repeated to produce 
the restored EM of full resolution (×1) from the restored 
EM of 1/4 and the full scale EM (×1), which yields the 
most salient features of the image. 

 

 
Fig. 2. The edge pyramid and restoration process. 

 
Fig. 3. Contour restoration process from EM of 1/16 and 
EM of 1/4. 

 

Fig. 4. Contour line candidates obtained by our algorithm 
(left), and those obtained by Canny detector [4] (right). 

As shown in Fig. 3, the EM of 1/16 is enlarged to the 
size of the1/4 EM, and they are merged together. The edge 
flags in the 1/4 EM that appear in the edge flag region of the 
enlarged EM are preserved (indicated in black in the merged 
EM), while isolated fragmental lines are eliminated. Then 
the edge flag region in the merged EM (indicated in gray) is 
thinned by erosion to restore the connectivity among the 
fragmental contour lines. 

The candidates for contour lines obtained in this algo-
rithm are much less compared to the edge lines calculated 
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by a Canny detector [4] as shown in Fig. 4. The selection to 
determine the final contour line is carried out by merging 
the candidates with the texture information, which will be 
explained in § 2.2. 

 
2.2. Texture analysis 

 
The texture analysis is carried out only for full scale images, 
and reduced resolution images are not used in this process. 
The texture of a local image (64×64 pixels) is also repre-
sented with oriented edges. However, we employ locally 
determined threshold rather than the globally determined 
threshold used in the contour delineation. The local thresh-
old is determined by the rank-ordering threshold of a small 
region of 5×5 pixels. 

An edge flag is detected at each pixel if its gradient val-
ue is larger the 10th largest gradient value in its 5×5 
neighborhood. This threshold process is expressed as fol-
lows: 

 
where S is a 5×5 matrix centered with pixel p. 

The spatial structure of texture is compactly represented 
by a PPED (projected principal edge distribution) vector [9] 
(Fig. 5). An edge map is first split into four edge flag maps 
according to the principal orientations at each pixel. The 
texture information in this 64×64 region is then summa-
rized into a 64 dimension vector by projection and concate-
nation (the bottom right in Fig. 5). We name the PPED vec-
tors thus obtained as "texture vectors". Differences among 
the texture vectors are calculated using Manhattan distance. 
Sampling of texture vectors is carried out for every 16 pix-
els in both horizontal and vertical directions in the entire 
image. 

Gradient values theoretically vary from 0 to 1275, and 
typical values fall in the range from 20 to 1000. Edge flags 
with gradient values less than 20 are considered as unno-
ticeable. If the number of unnoticeable edge flags exceed 
80% of the total number of edge flags in the 64×64-pixel 
region of a sample point, this sample point is taken as non-
texture. Such sample points are grouped as a non-texture 
cluster and excluded from the following segmentation anal-
ysis. 

The texture vectors generated from an input scene are 
analyzed with K-means clustering. Sample points of such 
texture vectors are indicated by dots in the texture map (Fig. 
6). We found that increasing the cluster number either leads 
to new clusters around the boundary of different textures 
(like the light blue cluster in the left of the figure) or subdi-
vision of ambiguous region (like the pink cluster in the left 
of the figure), which is not preferable. Although not shown, 
we could expect that cluster number larger than 5 would 
severely impair the semantics of the segmentation result. 

For simplicity and generality, we set the default cluster 
number as 5. 

Note that the K-means clustering carried out in the fea-
ture space of the texture vector does not include any loca-
tion (coordinate) information about where the vectors are 
sampled. But as shown in Fig. 6, clusters are very well seg-
regated and separated in the spatial coordinate space. This 
fact indicates that the texture vector representation based on 
the PPED algorithm very well describes the texture feature 
of local images. 

 

Fig. 5. A 64-dimension PPED vector is generated from four 
direction edge maps as distribution histograms. 

 
Fig. 6. Texture map showing the sample points after K-
means clustering of PPED vectors. The cluster number is set 
as K=5 (left) and K=3 (right). 
 
2.3. Cue integration 
 
In this part, it is explained how the contour and texture in-
formation are integrated to give out the object region. 

Notice that the contour information is line-based, while 
texture and non-texture information are region-based. To 
combine them, the contour information is first converted 
into a region-based form by the watershed technique to a 
fake gray scale image generated from the contour infor-
mation. The pixels on the contour candidates and the pe-
riphery of the whole image are assigned with the highest 
intensity value, and then the image is dilated with descend-
ing intensities, hence the farthest pixels would form valleys 
and the contour and periphery pixels form peaks. Then wa-
tershed is carried out to divide the fake gray scale image 
into a number of regions as shown in Fig. 7. The contour 
candidates extracted in § 2.1 are preserved. Besides, unde-
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sirable breaks are eliminated and object boundaries are inte-
grated through watershed. Notice that the common over-
segmentation problem of conventional watershed [13] is 
greatly relieved even without any post merging process. 

 

 
Fig. 7. Fake gray scale image produced from the contour 
information (left) and waterlines produced by watershed 
(right). 

Here we explain how the texture map like the ones in 
Fig. 6 is utilized to extract the object from a scene. A rough 
object region is determined firstly. Sample points of the 
same feature cluster but spatially separated in the texture 
map (the left of Fig. 6) are regarded as different clusters. 
Since the object is supposed to be entirely included in the 
scene, we define background as the region of the two rows 
at the top and bottom and the two columns at the right end 
and left end. Then the clusters that include sample points 
falling in the peripheral region are erased as background. 
Afterwards, those clusters adjoining to each other are 
merged into one cluster and the largest cluster is extracted 
as the object or a part of the object. Via dilation and erosion, 
the sample points in the extracted cluster are fused into a 
unified region. Thus a rough object region is determined. 

The texture-based discrimination well separates the ob-
ject area from the background area, while their boundaries 
are too fuzzy to determine the boundary lines correctly. 

In each basin (a segmented region) of the watershed im-
age, the number of pixels belonging to the rough object re-
gion is counted. If the number exceeds 80% of all pixels in 
the basin, the basin is regarded as belonging to the object. 
Since the waterlines contains all salient features extracted in 
§ 2.1, the boundary lines are correctly retrieved. 

 
3. EXPERIMENTS 

 
Simulation experiments are carried out on several natural 
scenes, some from the Berkeley segmentation dataset [14], 
and some from RuG natural image dataset [5], with varying 
object sizes, shapes, and various backgrounds. Due to space 
limitation only a few representative results are shown as 
examples (Fig. 8). As for the bird image on the top, our 
method extract the object region with clear and almost exact 
boundaries. There are still some imperfect fragments of 
background mistaken as a part of object, which mainly 
comes from the salient background. Such noise in the back-
ground is also difficult for human eyes in an instant view, 
and we mainly deal with such ambiguous boundary relying 

on our knowledge that things usually appear with smooth 
boundaries. 

  

  

  

  
Fig. 8. The original image (left) and object region detected 
(right). 

We have the human segmentation of the datasets modi-
fied to serve our object extraction task. And use the F-
measure, which is the harmonic mean of precision and recall 
measures of the ground truth pixels.  As for the above four 
images, we report an average F-measure score of 0.89, 
which is promising compared with 0.86 reported in [15].  

In the tiger image at the bottom, the tail is lost due to the 
large window size in texture analysis step. To solve this 
problem, some of the discarded basins of small size (less 
than 300 pixels) and adjoining to the object region are re-
covered. Some results are shown in Fig. 9. The tail of the 
tiger missing in Fig. 8 was also restored. 

Another point worth mentioning is that, all the tech-
niques employed in this work are pixel-based, which pro-
vides a possibility of highly-parallel hardware implementa-
tion. In addition, we could expected that the present method 
would yield much better results as compared to other meth-
ods employing GMM instead of  K-means, Euclidean dis-
tance or f-divergence instead of Manhattan distance, and so 
forth. Future work will focus on improving the conversion 
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of contour into region information and hardware implement 
of the system. 

 

  

  

  
Fig. 9. The original image (left) and object region detected 
(right). 

 
4. SUMMARY 

 
We present an unsupervised object extraction system capa-
ble of separating animal images from background in natural 
scenes. Edges are detected from original images at multiple 
reduced-resolution images and used to identify object con-
tours. A rough object region is determined utilizing texture 
information based on oriented edges. Contour is converted 
into a region-based form via watershed technique to com-
plement the exact object boundaries. The method has been 
further applied to various natural scenes and has shown 
promising results. 
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