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ABSTRACT

In this work, a particle swarm optimization (PSO) algorithm
is used to cooperatively estimate a monitored parameter by
sensor nodes in an ad-hoc wireless sensor network (WSN).
In the proposed algorithm, every sensor node of a wireless
sensor network is equipped with a modified particle swarm
optimization (MPSO) algorithm to estimate a parameter of
interest. A diffusion scheme is used to cooperatively estimate
this parameter by sharing the local best particle and the corre-
sponding particle error value to the neighboring nodes. Thus
the performance of the wireless sensor network is improved
by exploiting the spatial and temporal diversity of the net-
work by collaboratively estimating this parameter. The simu-
lation results show that the diffusion MPSO (DMPSO) algo-
rithm outperforms the non-cooperative MPSO (NCMPSO) al-
gorithm, the diffusion least-mean-squares (DLMS) algorithm
and the diffusion recursive-least-squares (DRLS) algorithm
by considerable margin.

Index Terms— Wireless sensor network (WSN), particle
swarm optimization (PSO), cooperative parameter estimation,
diffusion.

1. INTRODUCTION

In recent years, the rapid growth in wireless communica-
tion and electronic industry has enabled the development of
power-efficient, low-cost and multi-functional wireless sensor
networks [1]. This research area has become quite demand-
ing as WSN are being used in numerous applications like
environment and habitat monitoring, structural health moni-
toring, health care, home automation, traffic surveillance, just
to name a few. These applications commonly require to es-
timate certain parameters such as temperature, concentration
of chemicals, pressure, speed and position of target object.

The sensor nodes can perform multiple operations like
data acquisition from the surrounding physical media, sig-
nal processing tasks, control signaling with the central node
or with the neighboring nodes and also communicate rele-
vant data collected through wireless transceivers. Usually in
a WSN there is a group of sensors nodes in target sensing ar-
eas like battle fields, forests etc with limited communication

and power capability. In such environments, it becomes dif-
ficult to replenish the resources like the battery power of the
sensor node, therefore the available resources have to be uti-
lized efficiently. The limited resources can be optimally uti-
lized in a distributed network as it reduces multi hop or long
range communication required in the centralized network to
send the data to the central nodes for data processing.

Distributed computing has attracted many researchers to
apply to WSNs, as it enables low-cost estimation of the pa-
rameters and also its robustness to node failure. Distributed
parameter estimation can be done either by cooperatively es-
timating a parameter of interest by data sharing among the
neighboring sensor nodes or by non-cooperative estimation
where the sensor nodes independently estimates the param-
eter without any data sharing to its neighboring nodes. An
improved performance can be achieved by the collaboration
in a cooperative distributed network because it exploits the
spatial and temporal diversity of the network to reduce the es-
timation error whereas the non-cooperative network can only
exploit the temporal diversity of the network. There has been
extensive research done and different data sharing schemes
proposed to do cooperative parameter estimation to exploit
the distributed nature of the network effectively.

Initially, an incremental scheme for distributed data pro-
cessing was suggested [2], wherein the information circulated
through a topological cycle and the least-mean-square (LMS)
algorithm [3] was used at each sensor to adapt to variations
in the signal statistics. This distributed scheme provides a
faster convergence than a centralized scheme as well as a low
steady-state error at a lower computational complexity. How-
ever, if any sensor node in the sequential cycle fails then the
network stops functioning until the cycle is restored. In [4], a
solution was suggested to the node failure problem at the cost
of higher computational complexity.

To overcome the drawbacks of the incremental algorithm
and fully exploit the distributive nature of the network, a
diffusion-based LMS algorithm was proposed in [5]. In the
diffusion LMS (DLMS) algorithm, sensors share data with
their neighbors and perform local estimation using shared
data with their nearby, single-hop neighbors and perform lo-
cal estimation using the shared information. The DLMS algo-
rithm is computationally more complex than the incremental
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algorithm and is inferior in performance as well. However, it
is robust to node failure, which makes it more suitable for use
in practical applications.

Particle swarm optimization, a modern heuristic algo-
rithm belongs to the category of swarm intelligence methods,
was first introduced by Kennedy and Eberhart [6]. The PSO
algorithm has advantages such as ease of hardware and soft-
ware implementation, available guidelines for choosing its
parameters, ability to overcome local minimum problem and
faster convergence than other heuristic algorithms such as ge-
netic algorithm, differential evolution and bacterial foraging
algorithm [8]. In this work, a standard PSO algorithm [7]
is modified by using the inertia weight update function pro-
posed in [9] to increase the convergence speed of the particles
in the search space. This modified PSO algorithm is used at
every node to estimate the parameter of interest. In the earlier
optimization problems related to WSNs [10], the PSO algo-
rithm used a larger particle swarm size and the data window
size to estimate the parameter at every node. Whereas in the
proposed algorithm, the particle swarm size and data window
size are reduced by cooperatively estimating the parameter
using a novel diffusion scheme and thus the computational
complexity is reduced.

The paper is organized as follows. The problem is formu-
lated in Section 2. followed by the network model discussed
in Section 3. The proposed algorithm is detailed in Section 4.
In Section 5, the simulation results are reported and the paper
concludes with Section 6.

2. PROBLEM FORMULATION

Consider a group of S sensor nodes randomly distributed in
the target sensing area. At the sensor node an unknown sys-
tem parameter w0 is estimated. The unknown system param-
eter w0 is represented by a column vector of order m×1. The
input and output of the system at time t is defined by Us(t)
and ds(t), respectively. The input data matrix Us(t) is of or-
der n×m and is a group of row vectors us(t) of order m× 1
formed using the input data block as follows:

Us(t) = col{us(t − n + 1),us(t − n + 2), . . . ,us(t)} (1)

and ds(t) is a column vector of length n× 1 and is expressed
as follows:

ds(t) = Us(t)w0 + vs(t), (2)

where vs(t) is additive noise. Generally a PSO algorithm
works efficiently for batch type optimization problems where
the entire input data is available off line. But in an online
processing scenario the entire input data is not available, so
an input data block of size n is taken at every iteration. The
data window slides at every iteration by one step which will
add a new data point and exclude the oldest data point in the
data window so that the window size remains constant.

Here, in this work a MPSO algorithm is used at each node
to minimize the objective function defined as

Js,i = [||ds − UsXs,i||2]/n, (3)

where Xs,i is the ith particle position vector of node s. This
objective function defines the search space and the position
of every particle in the search space is assumed to be the po-
tential estimate of the vector w0. In the proposed diffusion
scheme the sensor nodes share its local best particle position
X∗∗

s and the corresponding local best error J∗∗
s with its neigh-

boring nodes as shown in Fig. 1. The information shared from
the neighboring nodes is used to reduce the estimation error
at every node.
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Fig. 1. Neighboring nodes sharing their local best particle
X∗∗

s and the corresponding error J∗∗
s .

3. NETWORK MODEL

Consider a network of S sensor nodes randomly distributed
in a normalized area. The nodes are placed in such a way
that every node has some sensors in close proximity and each
node is interconnected only to its neighboring nodes. Each
node forms a communication link with its neighbors to share
information in a single hop. The communication range r is
set based on the amount of transmitting power each node is
allowed. So the nodes that are within the range r of any node
s comprise the neighbors of that node. It is also assumed that
the communication between nodes is noise free.

4. THE DIFFUSION MODIFIED PSO ALGORITHM

In the diffusion modified PSO algorithm, a modified PSO al-
gorithm is used at every node s to estimate the desired pa-
rameter w0 and a novel diffusion scheme is used to do the
estimation cooperatively which improves the network perfor-
mance. The steps of the proposed algorithm are as follows:

1. Initialization: At t = 0, initialize k particles Xs,i(0), i =
1, 2, ..., k of dimension m at each node, where Xs,i(0) =
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[xs,i,1(0), xs,i,2(0), ..., xs,k,m(0)]. The coefficients
xs,i,j(0), j = 1, 2, ...m of every particle are uniformly
distributed in the range [xmin, xmax]. Similarly, initial-
ize the velocities Vs,i(0), i = 1, 2, ..., k of all the node
particles , where Vs,i(0) = [vs,i,1(0), vs,i,2(0), ., vs,k,m(0)].
The velocity coefficients vs,i,j(0) are uniformly dis-
tributed in the range [−vmax, vmax]. The velocity
coefficients are limited in a certain range to explore
the search space more effectively and the maximum
velocity coefficient vmax is defined as [11]

vmax = vc · xmax, (4)

where vc is the velocity constraint factor.

2. Particle error calculation: Calculate the estimation
error for every particle using the objective function
given in (3).

3. Particle best position: Only in first iteration (t = 0),
set the particle best position X∗

s,i(0) to the current
position of the particle Xs,i(0) and particle best error
J∗

s,i(0) to the corresponding particle error value Js,i(0).
For t > 0, check: If Js,i(t) < J∗

s,i(t−1), i = 1, 2, ..., k
then set J∗

s,i(t) = Js,i(t), X∗
s,i(t) = Xs,i(t) and

continue; else set J∗
s,i(t) = Js,i(t − 1), X∗

s,i(t) =
Xs,i(t − 1) and continue.

4. Local best particle position: Search for the minimum
among all particle best error J∗

s,i(t), i = 1, 2, ..., k and
assign it to Js,min(t), then set Xs,min(t) to the particle
position corresponding to the error Js,min(t). If t > 0
and Js,min(t) < J∗∗

s (t− 1), then update local best par-
ticle error as J∗∗

s (t) = Js,min(t) and local best particle
position as X∗∗

s (t) = Xs,min(t) and continue; else set
J∗∗

s (t) = J∗∗
s (t − 1), X∗∗

s (t) = X∗∗
s (t − 1) and con-

tinue.

5. Diffusion: If a node has p neighboring nodes in-
cluding itself then share its local best particle er-
ror J∗∗

s and corresponding local best particle posi-
tion X∗∗

s to its p − 1 neighboring nodes. Using the
error values received from its neighbors, as shown
in Fig. 1, identify the minimum local best error
among itself and p − 1 neighboring nodes and set
J∗∗

s (t) = min(J∗∗
s (t), J∗∗

1 (t), ..., J∗∗
p−1(t)) and then

update the local best particle position X∗∗
s to the parti-

cle position corresponding to the error J∗∗
s (t).

6. Velocity update: For the next iteration update the par-
ticle velocity using the current particle velocity, the lo-
cal best particle position X∗

s,i and particle best position
X∗∗

s,i. The ith particle velocity coefficient in the jth di-

mension is updated according to

vs,i,j (t) = iws,i (t) vs,i,j (t − 1)
+c1r1

(
x∗

s,i,j (t − 1) − xs,i,j (t − 1)
)

+c2r2

(
x∗∗

s,j (t − 1) − xs,i,j (t − 1)
)
,(5)

where c1 and c2 are acceleration constants and r1 and
r2 are uniformly distributed random numbers in [0, 1].
In (5), the first term represents the inertia part, which
controls the global and local exploration of the parti-
cles in the search space, the second term represents the
cognitive part of PSO where the particle changes its
velocity based on its own thinking and memory. The
third term represents the social part of the PSO where
the particle changes its velocity based on the social-
psychological adaption of knowledge [7]. The accel-
eration constants are used to control the speed of ad-
vancement of the particles towards the particle best and
local best position and thus prevent the particles from
stagnation. For all particles limit the velocity coeffi-
cients to the predefined velocity limit vmax.

7. Position update: Using the updated velocities, then
update the particle position according to:

xs,i,j (t) = xs,i,j (t − 1) + vs,i,j (t) . (6)

8. Stopping criteria: If the maximum number of allow-
able iterations is reached then stop; else continue.

9. Time update: Update the time counter t = t + 1.

10. inertia weight update: Update the inertia weight ac-
cording to [9]:

iws,i(t) =
1(

1 + e
−ΔJs,i(t)

Sl

) , (7)

where iws,i(t) is the inertia weight of the ith particle of
node s, ΔJs,i(t) is the change in particle error between
the current and last generation, and Sl is the slope con-
stant used to adjust the transition slope based on the
expected error range. This relation limits the inertia
weight in the interval (0,1), with the midpoint of 0.5
corresponding to zero change in error. Consequently,
increase in error will lead to inertia weight larger than
the recommended fixed experimental value of 0.5, and
decrease in error will lead to inertia weight smaller than
0.5.

The inertia weight is made adaptable i.e. it is either
maintained at same value or changed when a better par-
ticle position is encountered to move the particle more
closer to the favorable position. If the particle does not
attain a lower error, its inertia influence is reduced. This
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modification however, does not prevent the hill climb-
ing capabilities of PSO, it merely increases the influ-
ence of potentially fruitful inertia directions, while de-
creasing the influence of potentially unfavorable inertia
directions.
Goto step 2.

Repeat steps 2 to 10 at every node s, s = 1, 2, ..., S. Figure 2
details the steps of the DMPSO algorithm.
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Fig. 2. DMPSO algorithm execution steps.

5. SIMULATION RESULTS

The proposed algorithm is simulated with a network size of
S = 20 sensor nodes. The input data is correlated with unit
variance and the noise is assumed to be additive white Gaus-
sian with zero mean and unit variance. The unknown vector
w0 m × 1 is initialized as col {1, 1, ..., 1} /

√
m, input data

block n = 10 and the tap size m = 4. At every node a swarm
size of k = 5 particles is initialized. The swarm parameters
such as the acceleration constants c1 and c2 are set to 1.8, the
inertia weight iws,i = 1 and the slope constant Sl = 1.2. The
mean-square-deviation (MSD) is calculated at every node us-
ing the local best particle position X∗∗

s according to:

MSD = E[||w0 − X∗∗
s ||2]. (8)

Figure 3 depicts the performance of the DMPSO algorithm
as compared to that of the non-cooperative MPSO algorithm
(NCMPSO). As can be seen from this figure, a 15 dB im-
provement is brought about by the DMPSO algorithm over
the NCMPSO algorithm at both 10 dB and 20 dB SNRs. The
poor performance of the NCMPSO algorithm is due to its con-
vergence to a local minimum. The cooperative estimation im-
proves the performance as the proposed algorithm exploits
both the spatial and temporal diversity of the network.

The DMPSO algorithm also reduces the computational
complexity and improves the performance of PSO algorithm
by using smaller swarm size at sensor nodes. This is demon-
strated by a scenario where 100 particles at each node is used
in a non-cooperative sensor network and 5 particles at each
node is used in a cooperative sensor network. For the non-
cooperative network the MPSO algorithm is used and for co-
operative network DMPSO algorithm is used. The results are
reported in Fig. 4. This figure shows that by doing coopera-
tive estimation the computational complexity can be reduced
without any performance degradation of the network

Finally, the performance of the DMPSO algorithm is com-
pared to those of the DLMS algorithm [5] and the DRLS al-
gorithm [12]. The results are depicted in Fig. 5 and Fig. 6
for SNR of 10 dB and 20 dB, respectively. As can be seen
from these figures, the DMPSO is by far outperforming both
of these algorithms. This improvement is of course reached
at an extra computational complexity.

6. CONCLUSION

This work proposes a new algorithm for parameter estimation
in adaptive wireless networks. The well-documenteted dif-
fusion scheme is combined with a modified PSO algorithm.
The resulting DMPSO algorithm has been shown to outper-
form both the DLMS and DRLS algorithms.
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