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ABSTRACT

Radio astronomical data are increasingly corrupted by human
telecommunication activities. Therefore, Radio Frequency
Interferences (RFI) mitigation becomes an important step in
the data processing flow, in particular for phased radio tele-
scope array. In this framework, the preliminary step is to re-
trieve the RFI spatial information. This article presents three
new techniques in radio astronomy allowing the estimation of
the RFI spatial signature. These techniques are based on sub-
space decomposition of time-lagged correlation matrices or
cyclic correlation matrices, and on a Blind Source Separation
approach. Compared to classical methods, these approaches
improve the quality of the spatial filtering obtained on the raw
uncalibrated sky map.

Index Terms— Radio astronomy, RFI mitigation, Spatial
signature vector estimation, Correlation matrix, Cyclostation-
arity, Alternating Least Squares

1. INTRODUCTION

Radio astronomy studies cosmic objects through the radio
waves they emit. New generation radio telescopes, such as
the LOw Frequency ARray radio telescope (LOFAR[1]), cur-
rently in operation in the Netherlands (see Figure 1), consist
in a high number of fixed omnidirectional radiating elements.
These antennas are phased together to provide agile multi-
beam capabilities.

The extreme sensitivity of such systems exposes them to
various and growing human telecommunication activities (po-
sitionning systems, mobile phone, audio and video broad-
casts,...). Even if some frequency bands are protected for ra-
dio astronomy, astronomers are interested in exploiting the
whole spectrum. In consequence, RFI mitigation is a major
issue in recent and future development in radio astronomy.
For more details, an extensive overview can be found in [2].
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Fig. 1. LOFAR superterp. Core of the radio telescope lo-
cated in Exloo, the Netherlands. LOFAR is composed of 4224
low band antennas (LBA, 30-80MHz) and 2496 high band an-
tenna tiles (HBA, 120-240MHz), distributed over all Europe.

The spatial diversity provided by phased arrays can be
used to derive some spatial filtering techniques such as the
ones presented in [3, 4]. These approaches are based on a rel-
atively simple model where cosmic sources can be neglected
compared to system noise and RFI levels. Moreover, the array
is supposed calibrated. In general, typical steps for applying
interferences suppression in radio interferometry are [5]:

e Estimating RFI spatial signature vectors

e Nulling the power coming from RFI sources directions

In this paper, we propose and compare three new RFI spa-
tial signature vector estimation approaches for RFI mitigation
in radio astronomy. We particularly focus on an extended
model which is uncalibrated and contains cosmic sources.

In section 2, we define our data model. Section 3 presents
the first technique, based on time-lagged correlation matrices.
Section 4 details a technique based on RFI cyclostationary
properties. The last technique, based on an Alternating Least
Squares approach, is explained in section 5. Section 6 pro-
vides comparisons between simulation results. The paper is
concluded in section 7.



2. DATA MODEL

We consider a phased antenna array made up of M antennas.
z(t) is the (M x 1) output data vector of this array. The field
of view of this radio telescope contains k, interferences and
k, cosmic sources. All of these sources are assumed to ful-
fill the narrow band assumption. Geometrical delays between
each antenna and each source can therefore be represented by
phase shifts.

The estimated phased antenna array correlation matrix is
then expressed by:

R, .+ (1) = <Z(t)zH(t — T)>T
= G(A R (1A + AR (T)AT)GH + N(7)
(D

with (.) the time averaging operator, 7' the integration
time and (.)7 the conjugate transpose operator. A, is the
(M x k,) matrix containing the k, normalized spatial sig-
nature vectors of the k, RFL. R, (7) is the (k. x k,) RFI
correlation matrix. Ag is the (M X k) matrix containing
the ks normalized spatial signature vectors of the ks cosmic
sources. Rg(7) is the (ks X kg) cosmic sources correlation
matrix. These cosmic sources are considered Gaussian, cen-
tered, white and stationary [6]. N(7) is the (M x M) sys-
tem noise correlation matrix, also with Gaussian entries. G
is a diagonal complex gain matrix corresponding to unknown
variations in the receiver chain. To reduce notation complex-
ity, this matrix gain will be merged with the spatial signatures
in the rest of the paper.

The cosmic sources, interferences and system noise, are
supposed to be uncorrelated to each other. Thus, R, (7),
Rs(7) and N(7) are diagonal matrices.

The purpose of this article is the estimation of A,. Clas-
sic approaches, such as the ones mentioned in the introduc-
tion, are based on subspace decomposition through a Singu-
lar Value Decomposition (SVD) of R, ,-(7 = 0). Applied
to our model (equation 1), a subspace decomposition would
lead to a biased estimation of A, due to cosmic sources and
uncalibrated system noise contributions (i.e. Rs(7) # 0 and
N(7) # 021, with O the null matrix, I the identity matrix and
o2 the system noise power).

The two first proposed approaches are also based on RFI
subspace estimation (SE), but with a prior reduction of cos-
mic sources and system noise influences. This can be done by
considering R, - (7) at other time-lags than 7 = 0 (section
3) or by introducing some RFI cyclostionary properties (sec-
tion 4). The third method exploits a Blind Source Separation
algorithm to get an individual estimation of all the RFI spatial
signature vectors.
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3. TIME-LAG APPROACH

In radio astronomy, we usually consider that cosmic sources
and system noise are almost white by nature [6]. Since cosmic
sources are white, there is a short time-lag 7 such as their au-
tocorrelation is asymptotically null for 7 > 79. We therefore
have, for 7 > 19:

R, (1) = <z(t)zH(t — T)>Oo

= AR (1) AT + ARG (T)AH +N(7)
—_—
—0 —0

=~ AR, (7)A 7 )

Applying a SVD to the observations correlation matrix
calculated for a time-lag longer than 7, we obtain the follow-
ing decomposition:

R, .- (1) = USV# (3)

with U and V orthogonal matrices, and S a real diagonal
matrix.

By identifying equation 3 with equation 2, the &, singu-
lar vectors of U corresponding to the %, dominant singular
values (theoretically the k&, non-null singular values) of S are
spanning the same subspace as A . The submatrix composed
of these vectors is therefore an estimate of the subspace gen-
erated by A,.

This estimation can also be improved by stacking several
R, .«(7), withi = 1,..., N. The SVD is then applied on
the M x M N resulting correlation matrix.

Figure 2 shows simulations with synthetic data (M = 48
antennas, ks = 3 cosmic sources, k, = 3 RFI). The Interfer-
ence to Noise Ratio (INR) is —6 dB. In consequence, the RFI
are barely visible (see Figure 2.a). The expected RFI subspace
is represented at Figure 2.b). The RFI subspace is estimated
with the proposed approach by using respectively N = 1 and
N = 9 different time-lags. Figure 2.c) and d) show the RFI
SE error relatively to the expected RFI subspace (i.e. differ-
ence between estimated A,p.A,.H and true AP.A,FH ). In both
simulations, the RFI subspace can be retrieved but the stacked
approach provides smaller SE errors in the sky map.

4. CYCLOSTATIONARITY APPROACH

Most of the RFI are by nature not stationary. However, most
of them present a hidden periodicity due to the periodic char-
acteristics involved in their construction (carrier wave, baud
rate, coding scheme...). These parameters are usually scram-
bled and hidden by the randomness of the message to be trans-
mitted.

An exhaustive overview of cyclostationarity theory and
applications can be found in [7, 8].
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Fig. 2. Time-lagged approach. x and y refer to spatial posi-
tions on the celetial sphere. all figures are in dB. (a) Original
raw sky map with k; = 3 cosmic sources and k. = 3 RFL
The array is a LOFAR LBA like array with M = 48 antennas,
and and integration over 8192 samples. The RFI are Binary
Phase Shifted Keying (BPSK) modulations. Since the INR =
—6dB, only the 3 cosmic sources are visible. (b) Expected
RFI subspace sky map to indicate the RFI positions. (c) Sky
map of RFI SE error obtained from the SVD of R, .-(T's)
where T’ is the sampling period. (d) Sky map of RFI SE error
obtained from the SVD of 9 stacked time-lagged correlation
matrices, R, .+ (T5) to R, .« (9.T5).

Consider a cyclostationary interference impinging a radio
telescope. For some specific cyclic frequencies, «, the fol-
lowing expression is non-zero:

Ry, (T) = <z(t)z(*)T(t - 7—)6*]'27rat> @

o0

with (.)* and (.)7 standing for the conjugate operator and
the transpose operator respectively.

Ry ,.(7) is called the cyclic correlation matrix, and
Ry ,(7) is called the conjugated cyclic correlation matrix.
Cyclic frequencies can be estimated through procedures like
the one proposed in [5].

The main advantage of the cyclostationary approach
is the asymptotical independence of contributions of non-
cyclostationary signals (i.e. cosmic sources and system
noise):
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2 o (1) = A RPN AT + AR () AT +

—0
)
NG (1)
——
—0
=~ A RS (1) AT (6)

Again, this approach allows us to get an estimate of A,
using a SVD as explained in section 3, equation 3. But this
time, a specific SVD must be applied for each RFI. This con-
straint provides an access to each individual spatial signature.
If available, a set of cyclic and conjugated cyclic correlation
matrices can also be stacked to enhance the estimation of each
RFI subspace.

Figure 3 shows simulations with synthetic data similar to
the previous section. To get sufficient cyclostationary infor-
mation, the INR has been set to 0dB. The RFI positions have
also changed (see Figure 3.a). The capacity of the algorithm
to extract one specific RFI subspace is shown on Figure 3.b).
A cyclic frequency corresponding to the selected RFI is cho-
sen (in our case, 2 times the carrier frequency). The corre-
sponding conjugated cyclic correlation matrix is calculated.
Then, the SVD provides a spatial signature estimation of only
the selected RFI. To define the whole RFI subspace, the pre-
vious procedure is applied 3 times for 3 different cyclic fre-
quencies. Figure 3.d) shows the RFI SE error relatively to
the expected RFI subspace. For comparison, the time-lag ap-
proach with N = 1 is given at Figure 3.c). With this INR,
the cyclic approach provides larger SE error than the time-lag
approach but the counterpart is the capability to extract each
individual RFI.

The next section describes an approach which provides
this capability as well but by only using the time-lagged cor-
relation matrices.

5. ALTERNATING LEAST SQUARES APPROACH

The purpose of this section is to use all statistical informa-
tion included in the time-lagged correlation matrices. To that
aim, we propose to use an iterative Alternating Least Squares
(ALS) algorithm that have been proposed, for example, in [9].
The idea can be expressed with defining a set of correlation
matrices for N time-lags, using equation 2:

Rz,z* (Tl) = ArRr(Tl)ArH
: (7

Rz,z* (TN) = ArRr(TN)ArH

Given this set, it is a well-known joint diagonalization
problem. The goal is to recursively estimate A, and R, (7;).
Following [10], we now briefly describe the algorithm.
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Fig. 3. Cyclostationary approach. (a) Original raw sky map
with the same parameters as for Figure 2 except thant INR =
0dB and RFI positions have changed. Both RFI and cosmic
sources are now visible. (b) Estimated subspace sky map of
1 RFI obtained by selectionning the right conjugated cyclic
frequency corresponding to this RFI (here, 2 times the carrier
frequency). (c) For comparison, sky map of RFI SE error
obtained from the SVD of R, .« (T's). (d) Sky map of RFI SE
error obtained from 3 consecutive SVD of conjugated cyclic
correlation matrix corresponding to each RFL.

5.1. Update of R, (7;)

The idea is to stack all the columns of the matrices defined in
(7). Adapted to our problem, it leads to:

r(7;) £ [vec(Ryz 2+ (11)), - - ., vec(Ryg 2+ (TN))]
dR,(7;) £ [diag(Re (1)), .- ., diag(Re(7n))]
r. (1) = (A" © A,)dR, (1) )]

where vec(.) denotes the stacking of the columns of a ma-
trix in a vector, diag(.) is a vector containing all the diago-
nal terms of the matrix in argument, and © is the Khatri-Rao
product.

We can deduce the set R,.(7;) from (8):

R, (7;) < undiag ((A;" © Ar)Trz(n)) ©)

where undiag(.) reconstructs a set of N diagonal matrices
from the matrix in argument, and 1 is the Moore-Penrose
pseudo inverse operator.

5.2. Update of A,

While all the R, (7;) have been estimated, the next step is to
estimate A .. By concatenating horizontally all the matrices
of the set, we notice that A . is postmultiplied by the concate-
nation of two matrices. It can be written as:
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Fig. 4. ALS Approach on a set of N = 9 time-lagged cor-
relation matrices. (a) Estimated subspace sky map of 1 RFI
obtained by ALS approach. (b) Sky map of RFI SE error ob-
tained with the ALS approach.(c)For comparison, sky map of
RFI SE error obtained from the SVD of the same set of ma-
trices.

R, = A [R.(m)A 7, .. Rp(mn)ALT] (10)
Rz = [RZ(T1)7 ceey RZ(TN)}

Finally, we easily find A,:

A — R, (1) [Re(m)A, . Re(rv) AT (1)

These steps are repeated recursively while reaching con-
vergence.

Figure 4 shows simulations with synthetic data similar to
the previous section, but N = 9 time-lags are stacked this
time. The capacity of the algorithm to extract one specific
RFI subspace is shown at Figure 4.a. Figure 4.b shows the
RFI SE error relatively to the expected whole RFI subspace.
For comparison, the RFI SE error for time-lag approach with
the same set of N = 9 matrices is given at Figure 4.c. The
ALS approach provides both smaller error and indivual RFI
extraction capability compared to the time-lag approach. An
extensive Monte-Carlo simulation is proposed in the next sec-
tion.

6. SIMULATIONS

Proposed methods are compared through Monte-Carlo based
simulations. The data model used in these simulations is the
one described in equation 1, with k, = 1 RFI and ks = 3
cosmic sources. Parameters of these simulations are:
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Fig. 5. Simulation results. (a) Fixed INR = —10dB, perfor-
mances of methods depending on the number of samples over
which correlations matrices have been evaluated. (b) Fixed
INR = 0dB, performances depending on the number of sam-
ples. (c) Fixed number of samples = 128 samples, perfor-
mances depending on the INR. (d) Fixed number of samples
= 2048 samples, performances depending on the INR.

e the number of samples used to estimate the different
correlation matrices : from 128 samples to 32768 sam-
ples.

o the INR : from —10dB to +10dB.

e the calibration, modeled as the noise power fluctuation
over antennas : from 0% to 20%.

The spatial signature vector estimation accuracy is mea-
sured with the normalized dot product between the estimated
vector and the true one. Results have been averaged over 100
iterations for each parameters configuration. As a prelimi-
nary result, we noticed an invariance of the methods results
with the array calibration.

Figure 5 shows results of these simulations depending on
the INR and on the number of samples. All the presented
methods show better performances than the classic method.
The cyclostationary approach shows similar performances
than the time-lag approach. However, the stacking of cor-
relation matrices calculated for different time-lags improves
the time-lag approach (referred as multi time-lags approach
on Figure 5). The ALS remains the best method in term of
estimation of the RFI spatial signature vector.

7. CONCLUSION

Different approaches allowing RFI spatial signature vectors
estimation in radio astronomy have been presented. These
methods rely on the correlation matrix of a phased antenna

204

array radio telescope. They are based on time-lagged correla-
tion matrices, RFI cyclostationary characteristics, and on an
Alternating Least Squares algorithm.

Performances of these methods are evaluated through
simulations, compared to a classical approach. The ALS tech-
nique, despite its high computational complexity, presents for
now the best performances for not too low INR. A next step
of this work would be to apply these algorithms onto real
data.
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