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ABSTRACT

In the last decade, several methods have been developed
for the despeckling of Synthetically Aperture Radar (SAR)
images. A considerable number of them have been derived
on the assumption of the fully–developed speckle model in
which the multiplicative speckle noise is supposed to be a
white process. Unfortunately, the transfer function of SAR
acquisition systems can introduce a statistical correlation
which decreases the despeckling efficiency of such filters.

In this work, a method for whitening a complex image ac-
quired by a SAR system is proposed. By using the statistical
properties of the acquired image the estimation of the SAR
system frequency response is performed by means of some
realistic assumptions; then a decorrelation process is applied
on the acquired image, taking into account the presence of
point targets. Finally, the image is despeckled. The experi-
mental results show that the despeckling filters achieve better
performance when they are preceded by the proposed whiten-
ing method; moreover, the radiometric characteristics of the
image are preserved.

Index Terms— Despeckling, SAR images, whitening,
correlated speckle noise, COSMO–SkyMed

1. INTRODUCTION

Speckle removal is a major problem in the analysis of SAR
images. Speckle noise is a granular disturbance that affects
the observed reflectivity. Usually, it is modelled as a multi-
plicative noise: this nonlinear behaviour makes the process
of original information retrieval a nontrivial task [1]-[3]. In
the recent years, multiresolution analysis tools have been suc-
cessfully applied to the above problem [4]-[6]. Despeckling
can be seen as an estimation problem. As such, the proposed
statistical despeckling methods can be classified according to
the estimation criterion and to the models of the processes that
are involved. Bayesian methods, such as LMSSE and MAP
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criteria, have been taken into consideration both in the spatial
and in the wavelet domain, e.g., in [1][2][5][6].

Most of the methods that have been proposed assume
that the speckle noise is an uncorrelated process that affects
the noise-free data. However, such a hypothesis does not
often hold in practice. For example, the data acquired by the
COSMO-SkyMed constellation of satellites demonstrate a
strong correlation of the speckle. Using classical despeckling
filters for such class of data yields unsatisfactory results. Few
papers, e.g., [7], deals with the problem of restoring SAR
images affected by correlated noise. Such processing needs
an accurate statistical modeling of the acquired data, as can
be found in [8].

In this paper, we propose a whitening algorithm that al-
lows us to produce data that can be suitably processed with
despeckling filters designed for uncorrelated speckle noise.
This study, based on the results in [8] in order to estimate the
SAR system transfer function, demonstrates that the whiten-
ing process is actually effective and allows classical despeck-
ling filters to be fully exploited also for correlated speckle
noise data. The experimental results, on synthetically speck-
led images and on true COSMO-SkyMed images, quantify
the performance gain introduced by the proposed whitening
approach.

2. SUB–OPTIMAL DESPECKLING PROBLEM

In [8], the spectral properties of a complex SAR images have
been investigated and a generalization of the fully–developed
speckle model has been given. Assuming the observed scene
be composed by a set of point scatterers, let σc(r) be the dis-
crete complex backscatter coefficient per area that describes
the radar target scene for each 2–D Cartesian coordinates r =
(rx; ry). In the hypothesis of fully–developed speckle, σc
is modeled as a white complex circular symmetric Gaussian
process, having zero mean and variance σ(r), where σ is the
radar backscatter or target scene. By supposing that the en-
tire acquisition chain is likely represented by a cascade of lin-
ear filters, we can synthesize them as the SAR system trans-
fer function h. Using the previous assumptions, the complex
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radar image g, i.e. the coherently acquired image, can be de-
fined as

g(r) = F−1 {Σc(f) ·H(f)} , (1)

where F−1 {·} denotes the inverse Fourier transform operator,
Σc denotes the Fourier transform of σc and H is the Fourier
transform of h. Hence, the despeckling problem consists in
finding the estimator of the non-stationary radar backscatter
σ given the observation of g. Although its general validity,
the model expressed in (1) requires the explicit knowledge of
the SAR system frequency response H .

The most used approach to the despeckling problem in the
literature is based on the multiplicative speckle model:

|g(r)|2 = σ(r) · sn(r), (2)

where sn is a multiplicative noise process that is supposed to
be statistically independent of σ. Only in the very particular
situation in which the SAR system transfer function is negli-
gible, i.e. g = σc, the well known fully–developed speckle
model is obtained:

|σc(r)|2 = σ(r) · sn(r), (3)

where sn is modeled as a white random process having ex-
ponential distribution, with unitary mean and variance. How-
ever, in the general case the models given in (2) and in (1)
are interchangeable only taking into account that sn is statis-
tically correlated due to the SAR system frequency response.
Despite this fact, most of the known despeckling filters are
based on the hypothesis of uncorrelated speckle noise sn due
to its simplicity.

In the proposed method, we follow a sub–optimal ap-
proach in order to solve the despeckling problem. We divide
the main task in two consecutive steps:

1 Whitening stage: an estimator of the complex backscat-
ter coefficients, σ̂c, is obtained from the complex image
g using the general model given in (1).

2 Despeckling stage: the estimator of the radar backscat-
ter, σ̂, is finally obtained by using some known filter
based on the model given in (3), where we replace σc
with its estimator σ̂c.

As it has been pointed above, we are not directly interested
in developing a new despeckling filter (what we called the
despeckling stage) in this work. Instead, we focus our atten-
tion in developing an explicit expression for the estimator σ̂c
(whitening stage).

3. ESTIMATION OF THE COMPLEX
BACKSCATTER COEFFICIENTS

The estimation of the source signal σc, given the observation
of its output g from an unknown linear system h, is a typical

problem of blind deconvolution. Several methods have been
proposed in literature [9, 10] in the last two decades in the
field of image restoration. Many of them are based on iter-
ative algorithms and/or require some hypothesis on the prior
distribution and the hyperparameters of the source signal, in
order to use the Bayesian inference framework.

In our approach, any assumption on the statistical distri-
bution of the target scene σ is avoided. Instead, we relax the
problem doing some useful hypothesis on the SAR system. It
is realistic to assume that the SAR system can be represented
by a band-limited low-pass filter with cutoff frequency fc:

H(f) ≈ 0 ∀|f | > |fc|, (4)

where fc is known or it can be easily inferred by means of the
observation of the spectrum of g. Then we define the estima-
tor of the backscatter coefficients σ̂c to be:

σ̂c(r) =

F−1
{
G(f) ·

[
Ĥ(f)

]−1
}
∀|f | ≤ |fc|,

0 otherwise.
(5)

being Ĥ some estimator of H . Thus the blind deconvolu-
tion problem has been simplified in the estimation of the SAR
system frequency response H . In the following discussion, a
method for the estimation of H is presented.

3.1. Statistical property of the periodogram of the com-
plex image

The average joint moment of the second order of g, taken over
an (2Nx + 1)× (2Ny + 1) spatial grid D, can be defined as

Rg(r) =
∑
r′∈D

E[g(r + r′)g∗(r′)]

(2Nx + 1)(2Ny + 1)
. (6)

By supposing that a spatial average radar backscatter σ exists,
and evaluating (6) when the dimensions of D tends to infinity,
the average spectrum of g, Sg , is obtained [8] as

Sg(f) = F

{
lim

Nx→+∞
lim

Ny→+∞
Rg(r)

}
= σ |H(f)|2 . (7)

The average spectrum Sg can be estimated by means of the
periodogram of g, Ŝg [7]:

Ŝg(f) =
1

Nc

∑
c∈C

∣∣∣∣F{g(r) · w(r− c)

Nw

}∣∣∣∣2 , (8)

where C is an opportune subset of Nc points of the plane and
w is a Nw–points window mask centered at 0. We define
the estimation error of the periodogram Ŝg , ∆Sg , outside the
SAR system stop-band, as
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∆Sg (f) = Ŝg(f)− Sg(f) |f | ≤ |fc|. (9)

Despite the fact that the statistical description of ∆Sg in-
volves the frequency components of the SAR system and it
cannot be expressed in a closed form, some qualitative as-
sessment can be derived. From the hypothesis given for the
model in (1), it follows that the Fourier transform of g is a
zero–mean white-noise complex circular symmetric Gaussian
process [11]. By assuming that we deal with images whose
dimensions are much larger than the distance at which the
correlation is considerable, the subset C can be properly cho-
sen such that the summation in (8) is computed over indepen-
dent exponential random variables. Moreover, they can also
be supposed equally distributed for a sufficiently large win-
dow w thanks to the ergodicity assumption on σ as stated in
(7). Hence, according to the central limit theorem, the peri-
odogram Ŝg converges in distribution to a Gaussian process
having Sg mean and variance proportional to N−1

c as Nc in-
creases. Using the relation (9), the estimation error of the
periodogram has probability distribution (pdf) given by

pdf∆Sg (f) ≈ N
(

0;
η(f , σ)

Nc

)
for Nc → +∞, (10)

where η is some function which is independent from Nc.
Since Sg depends upon the averaged radar backscatter σ, the
variance of ∆Sg (f) is expected to be higher for brighter target
scenes rather than for darker ones.

3.2. Estimation of the SAR system frequency response

It is reasonable that the SAR system transfer function h is
a linear-phase FIR filter in order to avoid phase distortion
in the detected image. In the following exposition we will
do the slightly stronger hypothesis that the SAR system fre-
quency response H is a real central–symmetric nonnegative
function belonging to a set of parametrized curves F (θ), hav-
ing known shape F and unitary energy, but unknown value of
parameters vector θ = (θ0, . . . , θNθ−1), Nθ finite . In sym-
bols, it is expressed by:

∃θ ∈ Θ : H(f) = F (f ;θ) ∀f , (11)

such that, ∀f and ∀θ ∈ Θ, we have


F (f ;θ) ≥ 0

∃fs(θ) : F (f + fs;θ) = F (−f + fs;θ)∫
|f |<|fc| F

2(f ;θ)df = 1 ,

(12)

where Θ is the parameters space. It should be noted that the
hypothesis of unitary energy is needed to remove the gain am-
biguity of the SAR system expressed in the model (1). Hence,
we decide that our new goal is the indirect estimation of H

by means of the direct estimation of the parameters vector θ,
which fully defines the SAR system frequency response:

Ĥ(f) = F (f ; θ̂). (13)

Now, substituting (7) and (11) into (9), yields

Ŝg(f) = σF 2(f ;θ) + ∆Sg (f). (14)

We observed that ∆Sg has zero mean and its energy is quite
smaller than the averaged spectrum Sg . Supposing to deal
with ergodic processes, the average of the periodogram, AŜg ,
is:

AŜg =

∫
Ŝg(f)df =

∫
|f |<|fc|

[
σF 2(f ;θ) + ∆Sg (f)

]
df

≈ σ
∫
|f |<|fc|

F 2(f ;θ)df +

∫
|f |<|fc|

E
[
∆Sg (f)

]
df

≈ σ, (15)

where we have substituted the relations (14) and (10) in the
second and fourth step, respectively, and we have used the
assumption of unitary energy given in (12). By using the def-
inition given in (8) and extending the summation to the entire
image, we can notice that the average energy of the complex
image g, Eg , is related to the average of periodogram:

AŜg =

∫
Ŝg(f)df

=
1

Nc

∑
c∈C

∫
|f |<|fc|

|F {g(r) · w(r− c)}|2 df

=
1

Nc

∑
c∈C

∑
r

∣∣∣∣g(r) · w(r− c)

Nw

∣∣∣∣2
= Eg, (16)

where the Parseval’s theorem has been used in the second
step. Hence we obtain from (16) and (15):

σ ≈ Eg. (17)

The relation in (17) can be now substituted into (14) in order
to remove the dependency upon σ:

Ŝg(f) = Eg · F 2(f ;θ) + ∆Sg (f) . (18)

Following the model expressed in (18), the estimation of
θ can be accomplished by means of a model fitting which
aims at minimizing the energy of ∆Sg . In order to obtain
a straightforward estimator of θ, we use a least squares ap-
proach. Thus, the least squares estimator of θ, θ̂ls, is given
by

θ̂ls = arg min
θ

∫
|f |<|fc|

∣∣∆Sg (f)
∣∣2 df , (19)
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where the quantity Eg is directly computed from g.
Finally, substituting (19) into (13), we obtain the estima-

tor of the SAR system frequency response:

Ĥ(f) = F (f ; θ̂ls). (20)

4. EXPERIMENTAL RESULTS

In this section, the experimental results obtained with the pro-
posed method are presented. The GG–MAP–SEG filter [12]
and the LMMSE filter [6] have been used to realize two dif-
ferent despeckling stages. For each of them, we have both im-
plemented a version preceded by the whitening stage which
we have introduced (shortly indicated with W–method) and
a version without using it (indicated with N–method). Tests
have been carried out on both synthetically generated speck-
led images and real SAR images.

4.1. Results on synthetically degraded images

A set of synthetically-speckled images have been generated
according to (1), by using a 8 bit 512× 512 test image (Lena)
as target scene. The band-limited SAR system frequency re-
sponse H has been supposed to be separable, i.e H(f) =
Hx(fx) · Hy(fy), with each component Hv , v ∈ (x, y), be-
longing to the class of the raised cosine functions: Hv(f) =
Av−Bv · cos[π(f +fc)/fc], |f | ≤ fc, where fc is the known
cutoff frequency and (Av, Bv), Av > Bv > 0, are the model
parameters such that the filter has unitary energy. In order to
avoid the results to be biased by a specific shape of the fil-
ter, the parameters (Av, Bv) have been randomly generated
for each realization of the complex images. Moreover, start-
ing random values (Ãv, B̃v) have been used to initialize the
model fitting routine at each iteration.

The quality of each despeckled image has been mea-
sured by means of the peak SNR (PSNR), given by PSNR =
10 log 10(2552/MSE), where MSE is the mean square er-
ror between the filtered image and the original target scene,
whose frequency components greater than the cutoff fre-
quency fc have been removed. Moreover, we have defined
the PSNR gain ∆PSNR = PSNRW − PSNRN , where
PSNRW and PSNRN are respectively the PSNR obtained
with the W–method and with the N–method.

Global statistics of the despeckling results have been com-
puted for both methods, grouping them with respect to the
simulated cutoff frequency fc: the average PSNR obtained
with the W–method (PSNRW ), the average PSNR obtained
with N–method (PSNRN ) as well as the average and the stan-
dard deviation of the PSNR gain (∆PSNR and σ∆PSNR, re-
spectively). The obtained results are shown in Table 1. As
can be seen, the W–method achieves a better despeckling per-
formance for all the tested cutoff frequencies. The decrement
of the averaged PSNR gain as fc increases is consistent with
the fact that when the noise tends to be uncorrelated the use

of whitening becomes unnecessary. The better behavior in the
absolute values of PSNR for the GG–MAP–SEG filter with
respect to LMMSE is due to the intrinsic characteristics of
the filters, with the former that generally surpasses the latter;
however, the PSNR gain shows a similar decreasing trend.

4.2. Results obtained on real SAR images

As to the results on true SAR data, they have been assessed by
using a 16 bit 2048×2048 single–look complex image, Pere-
tola, representing the area of Florence airport and extracted
from a 3–m resolution COSMO–SkyMed HImage Stripmap
acquisition. In Figure 1, the original image and the despeck-
led versions obtained with the W–method and the N–method
are shown. It can be observed that both methods behave sim-
ilarly on textures and point targets, but the W–method con-
siderably achieves better results on homogeneous areas. In
order to compare the performance gap, the equivalent number
of looks (ENL) has been computed over four homogeneous
areas in the original and in the despeckled images; the results
are reported in Table 2. Measurements confirm that the in-
troduction of the whitening stage dramatically increases the
effectiveness of the following despeckling stage.

Zone original N–method W–method

1 1.00 23.89 114.94
2 1.01 18.24 137.08
3 1.03 22.58 86.30
4 0.92 16.56 89.69

Table 2. Comparison of the ENL obtained with the MAP–
GG–SEG filter on four homogeneous areas.

5. CONCLUSIONS

Several known despeckling filters are developed on the hy-
pothesis of white speckle noise; thus a performance penalty
arises when they are applied to real SAR images, since SAR
system can be usually modeled as a band-limited low-pass
filter. In this paper, a whitening stage has been proposed
to be applied before the despeckling stage. Furthermore, it
has been derived only by means of the acquired image and
some realistic assumptions on the SAR system frequency re-
sponse; no hypothesis on the probability distribution of the
radar backscatter has been done. The experimental results
have been carried out on both synthetically degradated images
and real SAR images. As the SAR system cutoff frequency
moves away from the sampling frequency, it has been shown
that an impressive improvement of despeckling performance
is achieved by using the proposed method, with no evident
loss in terms of texture and point targets preservation.
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LLMMSE GG–MAP–SEG
fc PSNRN PSNRW ∆PSNR σ∆PSNR PSNRN PSNRW ∆PSNR σ∆PSNR

0.6 18.59 21.61 3.02 0.42 18.96 23.24 4.28 0.80
0.7 19.84 22.95 3.11 0.47 21.03 24.81 3.78 0.83
0.8 21.17 23.73 2.56 0.58 22.43 25.45 3.02 0.80
0.9 22.27 24.08 1.81 0.59 24.70 25.71 1.01 0.55

Table 1. PSNR obtained with the LMMSE and GG–MAP filters using different (normalized) cutoff frequencies.

(a) (b) (c)

Fig. 1. Results obtained by processing a real SAR image. Left to right: original (a), N–method (b), W–method (c).
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