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ABSTRACT 

Non-negative matrix factorization (NMF) has increasingly 
been used as a tool in signal processing in the last years, but 
it has not been used in the cochlear implants (CIs). To 
improve the performance of CIs in noisy environments, a 
novel sparse strategy is proposed by applying NMF on 
envelopes of 22 channels. In the new algorithm, the noisy 
speech is first transferred to the time-frequency domain via 
a 22- channel filter bank and the envelope in each frequency 
channel is extracted; secondly, NMF is applied to the 
envelope matrix (envelopegram); finally, the sparsity 
condition is applied to the coefficient matrix to get more 
sparse representation. Speech reception threshold (SRT) 
subjective experiment was performed in combination with 
five objective measurements in order to choose the proper 
parameters for the sparse NMF model. 
 

Index Terms— Non-negative matrix factorization, 
cochlear implants, sparse coding, objective measurements, 
speech perception threshold 

1. INTRODUCTION 

Cochlear implants (CIs) are electrical devices that help to 
restore hearing to the profoundly deaf. The main principle of 
CIs is to stimulate auditory nerves via electrodes surgically 
inserted in the inner ear. With the development of new 
speech processors and algorithms, the majority of implanted 
users benefit from this device, some of them to some degree 
allow users to communicate via telephone without much 
difficulty. However, average performance of most CIs users 
still falls below normal hearing (NH) listeners, and speech 
quality and intelligibility generally deteriorate in the 
presence of background noise. Specifically, users often 
complain that their CIs do not work well in background 
noise. It is well known that one of the most relevant 
differences between NH and CIs users in terms of speech 
perception is the dynamic range: the dynamic range of the 
impaired ear is much smaller than that of the normal ear. 
Thus the electrical stimulation provides a severe bottleneck 
of the information transfer, which only allows limited 
acoustic information to be transmitted to the auditory 
neurons [1]. Our recently developed sparse speech 
processing strategies [2] [3]significantly improve the speech 

intelligibility in patients with cochlear implants by reducing 
the level of noise and increasing dynamic range 
simultaneously to overcome the bottleneck of the 
information transmission.  
Non-negative matrix factorization (NMF) is a method to 
factorize a non-negative matrix into two non-negative 
matrices. After being introduced by Lee [4], NMF has 
increasingly been used as a tool in signal processing in the 
last years, such as image processing, speech processing, and 
pattern classification[5],[6],[7],[8],[9],[10]. Instead of 
learning holistic presentations, NMF usually results to parts-
based decomposition[4] and reconstruction of the signal by 
using non-negativity constraints. 

In this paper, a NMF based sparse coding strategy is 
proposed to improve the performance for CIs users in noisy 
environments. The basic motivation to use NMF is that the 
envelope in each channel is non-negative and the firing rates 
of neurons are never negative. Assuming that speech and 
noise signals are independent and that the observed noisy 
signal is obtained by adding the speech and noise signals, 
NMF is used to factorize the envelopegram, the matrix of 22 
channels envelopes, into NMF basis and coefficient 
matrices. The application of sparse NMF can now be 
interpreted as a noise reduction by assuming that the smaller 
NMF coefficients correspond either to the noise basis 
vectors, or they do not contribute significantly in explaining 
the speech signal. Hence, by applying sparseness constraint 
to the factorization, the NMF coefficients which are small 
will be removed (set to zero) and a more sparse signal will 
be obtained by performing noise reduction. That is to say, 
the proposed algorithm can enhance the noisy speech by 
increasing the sparsity level of the reconstructed signal. 

Here, considering computation complexity and the real-
time implementation in the future, a basic NMF with 
sparsity constraint is used aiming to improve the 
performance of CIs users in noisy environment. In order to 
select a proper sparsity constraint parameter, five objective 
evaluation algorithms combined with speech perception 
threshold (SRT) subjective experiments were carried out for 
choosing the proper sparse parameter to obtain proper 
tradeoff between the sparsity and the approximation of the 
signal.  

2. NON-NEGATIVE MATRIX FACTORIZATION 
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Given a non-negative matrix Z , NMF is a method to 
factorize Z into two non-negative matrices W and H so 
that Z WH . To do the factorization, a cost function 

( || )D Z WH is usually defined and minimized. Since the 
basic NMF allows a large degree of freedom, different types 
of cost functions and regularities have been used in the 
literature to derive meaningful factorizations for a specific 
application [7],[8], [9]. In this paper the square Euclidean 

distance 21
2 2

( || )D Z WH Z - WH  is used as the cost 

function, which is equivalent to Maximum Likelihood (ML) 
estimation of W and H in additive independent and 
identically distributed (i.i.d.) Gaussian noise.  In order to 
impose additional sparseness, the standard NMF is 
combined with a sparseness penalty function based on 1L -

norm through a least absolute shrinkage and selection 
operator (LASSO) framework, i.e., the sparsity is measured 
by 1L norm. The sparseness weight (  in the following 

sections) can be optimized to get a good trade-off between 
the sparseness and approximation of the signal which is 
convenient to tune according to individual preference for 
CIs users in the future.  

In our application, Z denotes an N M envelope matrix 
of one analysis block where N and M  indicate the number 
of channels and the number of frames, respectively. NMF is 
applied to factorize the non-negative envelope matrix into 
basis matrix W and coefficient matrix H  respectively, the 
additional sparseness constraint is to explicitly control the 
sparsity of the NMF coefficients matrix H  that represents 
the activity of each basis vector over time such that 

 21
2 2

( || ) ( )D g Z WH Z - WH H  (1) 

is minimized, under the constraints : 0, 0ij ij ijW H   , 0  , 
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An iterative algorithm is implemented as proposed in 
[8] to minimize equation (1), in which basis matrix W and 
coefficient matrix H are updated by gradient descent and 
multiplicative update rules, respectively.  

The parameter   in equation (1) is an important factor, 
it is a compromise between the regulation and the NMF cost 
function. One novelty of this work is the two-step 
optimization approach, which is proposed to find a proper 
  to heuristically optimize the performance of the 
subjective and various objective measures. This approach is 
described in more detail in section 4. 

3. NMF SPARSE STRATEGY 

The dynamic range for electrical stimulation for CIs users is 
much smaller than acoustic dynamic range in the normal 

ear. Thus the electrical stimulation has a severe bottleneck 
to overcome, which only allows limited acoustic 
information to be transmitted to auditory neurons. However, 
many experiments have showed that speech has a high 
degree of redundancy and only few components are needed 
to allow people to understand speech [11, 12]. Most existing 
CIs strategies, such as continuous interleaved sampling 
(CIS), spectral peak  (SPEAK)  and advanced combination 
encoder (ACE) [13] indeed try to reduce the redundancy 
property of speech by selecting only few channels or only 
using envelope information to stimulate auditory neurons. In 
order to further solve the information bottleneck problem by 
stimulating auditory neurons sparsely and efficiently, a 
serials PCA and ICA based sparse algorithms working on 
the spectral envelope for CIs was proposed, evaluated and 
improved in our group[2], [3].  

Since the envelope in each channel is non-negative and 
the firing rates of neurons are never negative, the following 
part will introduce how NMF can be used in the sparse 
strategy for CIs. Suppose ( )z t  is the measured noisy signal, 

, ( )i jZ f is the envelope bin in the thi channel of the thj frame, 

which is calculated by weighting and summing the short 
time Fourier transform (STFT) spectrum according to the 
ACE strategy. Z is an N M  envelope matrix, where each 
column consists of 22N  channel envelope bins, and each 
row consists of 10M  frames in each analysis block, which 
is the same as the one used in [2],[3] in order to guarantee 
the same input signal is used in each analysis block. 

Input noisy speech z(t)

Pre_emphasis

STFT

Windowed to 128 per frame

Spectrum weighting and summating

22 channels’ Envelopes (Zace)

Sparse constrained NMF

NMF sparsed 
envelopes (Znmf)

Channel selection

Pulse electrical stimulation

Buffer

Reconstruction

Vocoder simulation
 

Figure 1 – NMF SPARSE strategy 

Figure 1 shows ACE and the proposed NMF sparse 
strategy for CIs stimulation. The pre-emphasis filter in 
Figure 1 is to compensate for the 6dB/octave natural slope 
in the long term speech spectrum, starting at 500 Hz. After 
transforming the input speech signal into spectrogram by 
Fourier analysis, the envelope is extracted in 22 frequency 
bands by summing the power within each band. These three 
steps are similar as those in the standard ACE strategy, 
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hence we define it as ACE envelope (although ACE has 
additional steps such as channel selection). Then NMF 
sparse are applied to the spectrum envelope on a block by 
block basis by buffering certain numbers of continuous 
frames in each channel. In order to produce stimuli for CIs, 
the envelopes are reconstructed from the NMF components 
respectively. Finally, appropriate channels are selected by 
the same method in ACE strategy and used to stimulate the 
auditory neurons or to obtain the vocoder simulation signals. 
In the stimulation stage, the electrical pulse trains driving 
the stimulation channels are modulated by the envelopes of 
the signals in the corresponding band pass filters. In 
addition, the pulse trains are separated in time and 
interleaved in order to avoid interaction among the 
electrodes. While the vocoder [14] simulated signals are 
produced by modulate white noise with the obtained 
envelope after channel selection. 

4. OBJECTIVE EXPERIMENTS AND RESULTS 

In this section, a two-step parameter selection procedure is 
introduced to find the   in equation (1) : first, various 
objective measures are introduced to select a range of 
sparsity levels; then a subjective experiment was performed 
to set the final value of  to get better speech intelligibility 
performance. In detail, since the subjective optimization is 
time consuming and expensive, five objective evaluation 
measurements are selected and evaluated for a wide range of 

[0.01: 0.01: 0.2]   as a pre-selection procedure. A fine 
range of    is obtained in this stage and is used in the 
subjective evaluation experiments to determine the final 
value.  

4.1. Objective evaluation methods and test materials 
Because of the space limitation, the introduction of each 
evaluation method is omitted. Table 1 lists the five objective 
evaluation methods chosen in this paper and with short 
descriptions to them. 

As shown in Table 1 most of the objective evaluation 
methods (except kurtosis) require time domain input, while 
the reconstruction of the NMF is an envelope matrix. In 
order to evaluate the performance of the sparse NMF 
algorithms for CIs, the test data are resynthesized vocoder 
[14] acoustical signal based on the spectrum envelope to 
simulate the perception of a CIs user, which have been used 
widely as an extremely valuable tool in the CIs field to 
simulate the perception of a CIs user [15]. Although the 
simulations cannot absolutely predict individual user’s 
performance, vocoder simulations have been shown to 
predict well the pattern or trend in performance observed in 
CIs users[15]. In this paper, the vocoder simulated signals 
are produced by modulate white noise with the ACE and 
NMF sparse strategies processed envelope after channel 
selection. 

The same Bamford-Kowal-Bench (BKB) sentences as 
in [2] [3] are used as the clean speech in both the objective 
and subjective experiments. Babble noises at three different 

long-term signal to noise ratios (SNR) (0, 5, 10 dB) are 
added to the speech material. 

Table 1 Five objective measurements chosen in this research 

Objective 
measurement 

Short descriptions  

Kurtosis Since one of the most important goals of these 
algorithms is to transform the stimuli to be in a 
more sparse distribution than noisy speech in 
order to resemble the natural code of auditory 
neurons better. The kurtosis of the signal is 
selected to measure the sparseness as used in [2]. 

Signal-to-
distortion ratio 
(SDR) 

The signal-to-distortion ratio (SDR) is shown to 
be valid as a global performance measure [16]. 

Normalized 
covariance 
metric (NCM) 
 

NCM measure is based on the covariance 
between the input and output envelope signals. 
The NCM measure is expected to highly 
correlate with the intelligibility of vocoded 
speech due to the similarities in the NCM 
calculation and CIs processing strategies[17]. 

Short-time 
objective 
intelligibility 
(STOI) 
 

STOI measure is based on a correlation 
coefficient between the temporal envelopes of 
the clean and degraded speech, in short-time 
overlapping segments. The basic structure of 
STOI is described in the reference [18].  

 SNR 
/Segment 
SNR 

The SNR, frame-based signal-to-noise ratio 
(SNR) and the corresponding segmental SNR are 
used as objective measure of speech quality [19] 
in this paper. 

4.2. Results 
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(a)  Kurtosis                               (b) SDR 

Figure 2 – Kurtosis and SDR of speech processed by different 
strategies at three SNR levels of 0, 5 and 10 dB  
Figure 2 (a) shows the kurtosis of the vocoder sounds of the 
clean speech’s ACE (ACEclean) envelope, the 
corresponding noisy speech’s ACE envelope and sparse 
NMF envelope at three SNR levels (0, 5 and 10dB) 
respectively.  

To evaluate the sparseness of the processed signal, the 
vocoder simulated output waveforms is used to calculate the 
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kurtosis of the entire time series. These results are consistent 
with the our former results [2] that the outputs of the NMF 
sparse algorithms are more sparse than the output of ACE 
algorithm. Figure 2 (b) shows the SDR of the vocoder 
sounds of the noisy speech’s ACE envelope and NMF 
envelope respectively. Figure 3 only shows the NCM, STOI, 
Segment SNR (Segsnr) and SNR of speech processed by 
different strategies at two SNR levels (5 and 10 dB) as 
examples.  

0 0.05 0.1 0.15 0.2
0

0.5

1
NCM(snr=5)



 

 

0 0.05 0.1 0.15 0.2
0

0.5

1
STOI(snr=5)



 

 

0 0.05 0.1 0.15 0.2
-10

-5

0

5
Segsnr(snr=5)



 

 

0 0.05 0.1 0.15 0.2
-5

0

5

10
snr(snr=5)



 

 
ACE

NMF sparse

 
(a) SNR=5 
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Figure 3 – NCM, STOI, SNR and Segment SNR (Segsnr) of 
speech processed by different strategies at three SNR levels of 0, 5 
and 10 dB 

Figure 2 and figure 3 show that for different scenario 
and measurements, different value of   should be set to get 
the corresponding optimized value.  Here comes how to 
choose one   from this range of optimal values to get better 
global better performance. In this study, a pilot experiment 
is designed aimed at finding one optimal   among this 
range to obtain better speech intelligibility.  

5. SUBJECTIVE SPEECH INTELLIGIBILITY 
EXPERIMENTS AND RESULTS 

Speech reception threshold (SRT) has been proven to 
faithfully represent speech perception reliability in [20]. To 
enable comparison with subjective results, speech 
recognition was assessed using a method and system that 
described in [21] to provide a speech-in-noise threshold in 
dB. In this paper, the SNR is changed adaptively with 1 dB 
step size. All experiments are performed in a sound-isolated 
room with the sounds presented through a SENNHEISER 
HDA 200 headphone with the Creek OBH- 21SE headphone 
amplifier. The BKB sentence lists are presented in a version 
spoken by a female talker. The sample ratio of the stimulus 
was 16 kHz. 5 NH (3 males, 2 females, and aged 18-26) 
paid native English speaking volunteers with no previous 
experience of the BKB sentence lists participated in these 
experiments.  

Table 2 shows the test materials in different conditions. 
In condition1, 2 and 3, the vocoder sound was reconstructed 
from NMF envelope with the sparsity constraint parameter 
  0.08, 0.13 and 0.18 for all the SNR (from -1dB to 10 dB 
in the SRT adaptive procedure) respectively. While in 
condition 4, different   applied within different SNR range, 
e.g.,  =0.08 when SNR between 7dB to 10 dB,  =0.13 
when SNR between 3dB to 6 dB and  =0.18 when SNR 
between -1dB to 10 dB according to the SNR dependent 
optimization value of   showed in Figure 2 and Figure 3. 

Table 2. The subjective experiment conditions and results. 

Cond.   SNR(dB) 

condition1 condition2 condition3 condition4
0

2

4

6

8

10
SRT

dB

1 0.08 -1 :1 :10 

2 0.13 -1 :1 :10 

3 0.18 -1 :1 :10 

4 0.08 7, 8,9,10 

0.13 3,4, 5,6 

0.18 -1, 0,1,2 

 
The bar chart in table 2 shows that condition 2 and 

condition 4 have significant better SRT than the other two 
conditions. It is reasonable that condition 2 and 4 have very 
similar SRT when we notice that their SRT values  are 
around 4 dB, in this situation, both condition have the same 
 =0.13, which in another way prove the reliability of the 
SRT test used in this paper. So the optimized   according 
to SRT should between 0.08 and 0.13.  
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Figure 4 – Five objective measurement values of the NMF sparse 
processed vocoder sound at three SNR levels of 0, 5 and 10 dB 

Figure 4 shows the bar chart of five objective 
evaluation measurement values when  was set to 0.13 
according to the SRT experiments which is chosen 
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heuristically to maximize the performance of the whole 
algorithm by subjective informal listening. It indicates that 
 =0.13 can improve most of the objective measurements 
for all three SNR although it is not always the golden value 
for different measures and SNR conditions.  

6. DISCUSSIONS AND CONCLUSIONS 

Normal hearing listeners understand speech well in a noisy 
environment, but this is a very challenging situation for CIs 
users. Sparse strategies proposed in our previous work 
showed prospect for CIs users in both noise reduction and 
sparsity enhancement in order to deliver key information to 
CIs users via limited frequency channels. The characteristics 
of the non-negativity of both the envelope in each channel 
and that of the firing rates of neurons draw our attention to 
the NMF which has increasingly been used as a tool in 
various applications, while it has not been used in the CIs 
yet.  In this paper, a basic NMF was applied to the envelope 
matrix with sparsity constraint on the coefficient matrix to 
get more sparse representation. Since the choice of sparsity 
parameter is important, five objective evaluations and a pilot 
subjective experiment were used together in this study 
aimed to choose the parameters of sparse NMF properly to 
trade-off between the objective measurements and speech 
intelligibility. Finally the objective results for the parameter 
chosen in the pilot experiment were applied and five 
objective evaluations were calculated for three different 
SNR, most of the objective evaluation measurements 
showed improvement compared to the noisy ACE strategy.  
In the future more participants of NH and CIs will be 
recruited to further evaluate the proposed CIs strategy. 
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