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ABSTRACT
In this work, the ε−normalized sign regressor least mean
mixed-norm (NSRLMMN) adaptive algorithm is proposed.
The proposed algorithm exhibits increased convergence rate
as compared to the least mean mixed-norm (LMMN) and
the sign regressor least mean mixed-norm (SRLMMN) algo-
rithms. Also, the steady-state analysis and convergence anal-
ysis are presented. Moreover, the proposed ε−NSRLMMN
algorithm substantially reduces the computational load, a
major drawback of the ε−normalized least mean mixed-
norm (NLMMN) algorithm. Finally, simulation results are
presented to support the theoretical findings.

Keywords: Adaptive filters, LMS, LMF, Least Mean Mixed-
Norm (LMMN), Sign regressor LMMN algorithm.

1. INTRODUCTION

While the least mean mixed-norm (LMMN) algorithm was
introduced in order to combine the advantages of both the
least mean square (LMS) and the least mean fourth (LMF)
algorithms [1]– [6], the sign adaptive filters were proposed
in order to reduce the computational cost and to simplify
the hardware implementation [7]– [8]. However, these sign
adaptive filters result in slower convergence speeds due to
clipping of the estimation error or the input data, or both [9].
The algorithm based on clipping of the input data of the
LMMN is known as the sign regressor least mean mixed-
norm (SRLMMN) algorithm. The convergence speed of the
SRLMMN algorithm can be increased by normalizing it.
Hence the name the ε−normalized sign regressor least mean
mixed-norm (NSRLMMN) algorithm. From the simulation
results it is shown that the ε−NSRLMMN algorithm outper-
forms both the LMMN and SRLMMN algorithms.

The paper is organized as follows. In Section 2, the
ε−NSRLMMN algorithm is proposed. The steady-state
analysis of the proposed algorithm is derived in Section 3,
and Section 4 presents its convergence analysis. A compari-
son of the computational complexity of the proposed algo-
rithm with those of other algorithms in the family is pre-
sented in Section 5. Finally, the simulation results and con-
clusions are presented in Sections 6 and 7, respectively.

2. THE ε−NSRLMMN ALGORITHM

Consider a zero-mean random variable d with realizations
{d(0),d(1), . . .}, and a zero-mean random row vector u with
realizations {u0,u1, . . .}. The LMMN algorithm is based on
the following convex cost function [1]– [3]:

Ji = E
[
δe2

i +(1−δ )e4
i
]
, 0 ≤ δ ≤ 1, (1)

where δ is the mixing parameter and ei denotes the estima-
tion error given by

ei = di −uiwi−1. (2)

The update equation for the ε−NSRLMMN algorithm can
be shown to be governed by the following recursion:

wi = wi−1 +
μ

ε + ||ui||2H
sign[ui]Tei[δ +(1−δ )e2

i ], i ≥ 0,

(3)
where wi (column vector) is the updated weight vector at
time i with optimal weight vector wo, μ is the step-size, ε
is a small positive constant used for regularization purposes,
||ui||2H = uiH[ui]uT

i , and H[ui] is some positive-definite Her-
mitian matrix-valued function of ui defined by

H[ui] = diag

{
1

|ui1 |
,

1

|ui2 |
, . . . ,

1

|uiM |
}

, (4)

where M is the filter length and sign[ui]T = H[ui]uT
i .

3. STEADY-STATE ANALYSIS OF THE
ε−NSRLMMN ALGORITHM

We shall assume that the data {di,ui} satisfy the following
assumptions of the stationary data model [10]:

A.1 There exists an optimal weight vector wo such that di =
uiwo + vi.

A.2 The noise sequence vi is independent and identically
distributed (i.i.d.) with variance σ2

v = E[v2
i ] and is in-

dependent of u j for all i, j.
A.3 The initial condition w−1 is independent of the zero

mean random variables {di,ui,vi}.

A.4 The regressor covariance matrix is R = E[uT
i ui] > 0.

For the adaptive filter of the form in (3), and for any data
{di,ui}, assuming filter operation in steady-state, the follow-
ing variance relation holds [10]:

μE
[||ui||2Hg2[ei]

]
= 2E [eai g[ei]] , as i → ∞, (5)

where

E[||ui||2H] = E[uiH[ui]uT
i ], (6)

ei = eai + vi, (7)

with g[ei] denoting some function of ei, and eai = ui(wo −
wi−1) is the a priori estimation error. Then g[ei] for the
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ε−NSRLMMN algorithm becomes

g[ei] =
ei[δ +(1−δ )e2

i ]
ε + ||ui||2H

,

=
δ (eai + vi)
ε + ||ui||2H

+
δ̄

ε + ||ui||2H
{e3

ai
+ eaiv

2
i

+2e2
ai

vi + vie2
ai

+ v3
i +2eaiv

2
i }, (8)

where δ̄ = 1− δ . By using the fact that eai and vi are inde-
pendent, we reach at the following expression for the term
E [eai g[ei]]:

E [eai g[ei]] = δ̄E

[
e4

ai

ε + ||ui||2H

]
+(δ +3δ̄σ2

v )

×E

[
e2

ai

ε + ||ui||2H

]
. (9)

Ignoring third and higher-order terms of eai , we obtain

E [eai g[ei]] ≈ (δ +3δ̄σ2
v )E

[
e2

ai

ε + ||ui||2H

]
. (10)

To evaluate the term E
[||ui||2Hg2[ei]

]
, we start by noting that

g2[ei] =
δ 2

(ε + ||ui||2H)2
[e2

ai
+ v2

i +2eaivi]

+
δ̄ 2

(ε + ||ui||2H)2

[
e6

ai
+6e5

ai
vi +6eai v

5
i

+15e4
ai

v2
i +15e2

ai
v4

i +20e3
ai

v3
i + v6

i

]

+
2δ δ̄

(ε + ||ui||2H)2

[
e4

ai
+6e2

ai
v2

i +4e3
ai

vi

+4eaiv
3
i + v4

i

]
. (11)

If we multiply g2[ei] by ||ui||2H from the left, use the fact that
vi is independent of both ui and eai , and again ignoring third
and higher-order terms of eai , we obtain

E
[||ui||2Hg2[ei]

] ≈ (δ 2 +15δ̄ 2ξ 4
v +12δ δ̄σ2

v )

×E
[

||ui||2He2
ai

(ε+||ui||2H)2

]
+(δ 2σ2

v + δ̄ 2ξ 6
v +2δ δ̄ξ 4

v )

×E
[ ||ui||2H

(ε+||ui||2H)2

]
, (12)

where ξ 4
v = E[v4

i ], ξ 6
v = E[v6

i ] denote the fourth and sixth-
order moments of vi, respectively.
Substituting (10) and (12) into (5) we get

μ(δ 2 +15δ̄ 2ξ 4
v +12δ δ̄σ2

v )E
[

||ui||2He2
ai

(ε+||ui||2H)2

]

+μ(δ 2σ2
v + δ̄ 2ξ 6

v +2δ δ̄ξ 4
v )E

[ ||ui||2H
(ε+||ui||2H)2

]
= 2(δ +3δ̄σ 2

v )E
[

e2
ai

ε+||ui||2H

]
. (13)

In order to simplify (13), we use the separation principle,
namely, that at steady-state, ||ui||2H is independent of e2

ai
.

Therefore, we obtain

μ(δ 2 +15δ̄ 2ξ 4
v +12δ δ̄σ2

v )E
[ ||ui||2H

(ε+||ui||2H)2

]
E[e2

ai
]

+μ(δ 2σ2
v + δ̄ 2ξ 6

v +2δ δ̄ξ 4
v )E

[ ||ui||2H
(ε+||ui||2H)2

]
= 2(δ +3δ̄σ2

v )E
[

1
ε+||ui||2H

]
E[e2

ai
], (14)

which can be set up compactly as

μ(δ 2σ2
v + δ̄ 2ξ 6

v +2δ δ̄ξ 4
v )Z1 =

[
2(δ +3δ̄σ2

v )Z2

−μ(δ 2 +15δ̄ 2ξ 4
v +12δ δ̄σ2

v )Z1

]
E[e2

ai
], (15)

where

Z1 � E
[ ||ui||2H
(ε + ||ui||2H)2

]
, (16)

Z2 � E
[

1

ε + ||ui||2H

]
. (17)

Therefore, the expression for the steady-state excess-mean-
square error (EMSE) ζ = E[e2

ai
] of the ε−NSRLMMN algo-

rithm is given by

ζ =
μ(δ 2σ 2

v + δ̄ 2ξ 6
v +2δ δ̄ξ 4

v )Z1

[2(δ +3δ̄σ2
v )Z2 −μ(δ 2 +15δ̄ 2ξ 4

v +12δ δ̄σ2
v )Z1]

. (18)

When ε is sufficiently small, which is usually the case, then
its effect can be ignored. Therefore, (16) and (17) reduce to

Z1 = Z2 = E
[

1

||ui||2H

]
. (19)

In this case, (18) becomes

ζ =
μ(δ 2σ2

v + δ̄ 2ξ 6
v +2δ δ̄ξ 4

v )
[2(δ +3δ̄σ2

v )−μ(δ 2 +15δ̄ 2ξ 4
v +12δ δ̄σ2

v )]
, (20)

which is independent of the regressor.
An alternative expression for the steady-state EMSE of

the ε−NSRLMMN algorithm can be obtained by using the
assumption ε ≈ 0 in order to simplify (13) into

μ(δ 2 +15δ̄ 2ξ 4
v +12δ δ̄σ2

v )E
[

e2
ai

||ui||2H

]
+ μ

(
δ 2σ2

v + δ̄ 2ξ 6
v

+2δ δ̄ξ 4
v
)
E

[
1

||ui||2H

]
= 2(δ +3δ̄σ2

v )E
[

e2
ai

||ui||2H

]
. (21)

Now, let us use the following steady-state approximation:

E

[
e2

ai

||ui||2H

]
≈ E[e2

ai
]

E[||ui||2H]
. (22)

In [11], we have shown that

E[||ui||2H] =

√
2

πσ2
u

Tr(R). (23)
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Substituting (22) and (23) into (21) we get

μ(δ 2σ2
v + δ̄ 2ξ 6

v +2δ δ̄ξ 4
v )E

[
1

||ui||2H

]
=

[
2(δ +3δ̄σ2

v )

−μ(δ 2 +15δ̄ 2ξ 4
v +12δ δ̄σ2

v )
]√πσ2

u
2

E[e2
ai

]
Tr(R) . (24)

Therefore, the steady-state EMSE of the ε−NSRLMMN al-
gorithm can also be approximated by

ζ =
μTr(R)(δ 2σ2

v + δ̄ 2ξ 6
v +2δ δ̄ξ 4

v )
[2(δ +3δ̄σ2

v )−μ(δ 2 +15δ̄ 2ξ 4
v +12δ δ̄σ2

v )]

×
√

2

πσ 2
u

E
[

1

||ui||2H

]
. (25)

Ultimately, an expression for the mean-square error (MSE)
of the ε−NSRLMMN algorithm is given by

E
[
e2

i
]
= ζ +σ2

v . (26)

4. CONVERGENCE ANALYSIS OF THE
ε−NSRLMMN ALGORITHM

In [1], the approximate bound on the step-size of the LMMN
algorithm was obtained by simply combining the step-size
bounds of LMS and LMF. Similarly, the approximate bound
on the step-size of our proposed ε−NSRLMMN algorithm
can be obtained by combining the step-size bounds of
ε−NSRLMS and ε−NSRLMF.

It was shown in [12] that the convergence in the mean
for the ε−NSRLMS algorithm is guaranteed by the stability
condition for the ε−NLMS algorithm, namely,

0 < με−NSRLMS < 2. (27)

Also, the mean convergence of the ε−NSRLMF algorithm
can be bounded by

0 < με−NSRLMF < μupper. (28)

Thus, by combining (27) and (28) the mean convergence of
the ε−NSRLMMN algorithm can be approximated by

0 < με−NSRLMMN < 2δ +(1−δ )μupper. (29)

From (29) it is clear that the ε−NSRLMMN algorithm re-
duces to ε−NSRLMF and ε−NSRLMS algorithms when
δ = 0 and δ = 1, respectively. Our future work will focus on
finding the upper bound for the step-size of the ε−NSRLMF
algorithm.

5. COMPUTATIONAL COMPLEXITY

In this section, the computational complexity of the
ε−NSRLMMN algorithm is compared with those of other
algorithms in the family, e.g., LMMN, SRLMMN, and
ε−NLMMN algorithms. Tables 1 and 2 present this com-
parison for real- and complex-valued data, respectively, in
terms of the number of real additions (+), real multipli-
cations (×), real divisions (/), and comparisons with zero
per iteration. Moreover, M is the filter order. As can
be seen from Table 1, the real-valued data case, both the
ε−NLMMN and ε−NSRLMMN algorithms have similar
computational complexity, while there are 2M and 2M +
4 extra additions and multiplications per iteration, respec-
tively, for the ε−NLMMN algorithm when compared to the
ε−NSRLMMN algorithm in the complex-valued data case
as reported from Table 2.

Table 1: Computational cost for real-valued data.
Algorithm + × / sign
LMMN 2M +2 2M +4
SRLMMN 2M +2 2M +2 2
ε−NLMMN 4M +2 4M +4 2
ε−NSRLMMN 4M +2 4M +2 2 2

Table 2: Computational cost for complex-valued data.
Algorithm + × / sign
LMMN 8M +3 8M +6
SRLMMN 6M +3 6M +2 4
ε−NLMMN 10M +3 10M +6 2
ε−NSRLMMN 8M +3 8M +2 4 4

6. SIMULATION RESULTS

In order to evaluate the steady-state and convergence perfor-
mance of our proposed algorithm, extensive simulations are
carried out for this purpose. The parameter settings in this
study are as follows. In all the simulations, we have chosen

ε = 10−6, the mixing parameter is fixed at δ = 0.5 (except
Figures 5-6), and the filter length is fixed at M = 10 for Fig-
ures 1-2 and M = 5 for Figures 3-8.

First, the steady-state MSE of the ε−NSRLMMN al-
gorithm using white and correlated Gaussian regressors is
shown in Figures 1-2, respectively. In Figure 2, the corre-
lated data is obtained by passing a unit-variance i.i.d. Gaus-
sian data through a first-order auto-regressive model with

transfer function

√
1−a2

(1−az−1) and a = 0.8. In Figures 1-2, the

MSE is plotted as a function of the step-size μ in additive
white Gaussian noise (AWGN) environment for a signal to
noise ratio (SNR) of 30 dB. As observed from these figures,
the simulation results are in a good match with the theoret-
ical results ((20) and (25)), which are, respectively, the first
and second approximations of the steady-state EMSE of the
ε−NSRLMMN algorithm. Also, as can be seen from these
figures, the theoretical results are in a better match with the
simulation results for correlated Gaussian data than white
Gaussian data.

Second, the convergence behavior of the ε−NSRLMMN
algorithm is compared with that of LMMN, SRLMMN, and
ε−NLMMN algorithms in an unknown system identification
setup with

wo = [0.227 0.460 0.688 0.460 0.227]T. (30)

Figure 3 shows the convergence performance of all the four
algorithms using white Gaussian regressors in a uniform
noise environment with SNR = 10 dB. As it is depicted from
this figure, the ε−NSRLMMN algorithm results in superior
performance over the LMMN and SRLMMN algorithms, but
is only slightly inferior when compared to the ε−NLMMN
algorithm. Also, it is interesting to note that the performance
of the SRLMMN algorithm is found to be identical to that of
the LMMN algorithm for the same misadjustment. No dete-
rioration has occurred to the SRLMMN algorithm. One can
also observe this particular behavior from Figure 4, which
shows the comparison of the third-tap weight learning curves
of all the four algorithms for the same parameter settings.
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Third, Figures 5-6 demonstrate, respectively, the MSE
and normalized weight error vector learning behaviors of the
ε−NSRLMMN algorithm for different values of the mixing
parameter δ in a uniform noise environment at SNR = 10
dB. As can be seen from these figures, the ε−NSRLMMN
algorithm boils down to ε−NSRLMF and ε−NSRLMS al-
gorithms when δ = 0 and δ = 1, respectively. Therefore, by
controlling δ we can control the tradeoff between fast con-
vergence rate and small misadjustment. We also find that for
uniform noise, the ε−NSRLMF algorithm is superior to both
ε−NSRLMS and ε−NSRLMMN algorithms.

Finally, Figures 7-8 illustrate, respectively, the MSE and
normalized weight error vector convergence behaviors of the
ε−NSRLMMN algorithm in uniform, Gaussian and Lapla-
cian noise environments for SNR = 10 dB. As can be seen
from Figure 7 that the best performance in terms of con-
vergence behavior is obtained with uniform noise while the
worst performance is obtained with Laplacian noise. We also
note from Figure 8 that the lowest weight error is reached
by the proposed algorithm for uniform noise environment as
compared to Gaussian and Laplacian noise environments.

7. CONCLUSIONS

In this work, the ε−NSRLMMN algorithm is presented and
resulted in a significant reduction in computational load over
the ε−NLMMN algorithm. The proposed ε−NSRLMMN
algorithm has been shown to exhibit slightly slower con-
vergence rate than the ε−NLMMN algorithm for the
same steady-state error. The mean-square analysis of the
ε−NSRLMMN algorithm is performed and is found to cor-
roborate the simulation results. Also, the convergence behav-
ior of the proposed algorithm is analyzed for different values
of the mixing parameter and different noise environments.
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Figure 1: MSE performance of the ε−NSRLMMN algo-
rithm using white Gaussian regressors in AWGN environ-
ment with SNR = 30 dB.
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Figure 2: MSE performance of the ε−NSRLMMN algo-
rithm using correlated Gaussian regressors in AWGN envi-
ronment with SNR = 30 dB.
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Figure 3: Comparison of the MSE learning curves of
LMMN, SRLMMN, ε−NLMMN, and ε−NSRLMMN algo-
rithms in a uniform noise environment with SNR = 10 dB.
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Figure 4: Comparison of the third-tap weight learning curves
of LMMN, SRLMMN, ε−NLMMN, and ε−NSRLMMN al-
gorithms in a uniform noise environment with SNR = 10 dB.
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ε−NSRLMMN algorithm for different values of δ in a uni-
form noise environment with SNR = 10 dB.
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Figure 6: Comparison of the normalized weight error vector
learning curves of the ε−NSRLMMN algorithm for different
values of δ in a uniform noise environment with SNR = 10
dB.
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Figure 7: Comparison of the MSE learning curves of the
ε−NSRLMMN algorithm in uniform, Gaussian and Lapla-
cian noise environments with SNR = 10 dB.
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Figure 8: Comparison of the normalized weight error vector
learning curves of the ε−NSRLMMN algorithm in uniform,
Gaussian and Laplacian noise environments with SNR = 10
dB.
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