20th European Signal Processing Conference (EUSIPCO 2012)

Bucharest, Romania, August 27 - 31, 2012

FAST LOSSLESS IMAGE COMPRESSION WITH 2D GOLOMB PARAMETER ADAPTATION
BASED ON JPEG-LS

Z. Wang, M. Klaiber, Y. Gera, S. Simon*

Dept. of Parallel Systems, Univ. of Stuttgart
70569 Stuttgart, Germany
e-mail: wangze @ipvs.uni-stuttgart.de

ABSTRACT

A Fast and Lossless Image Compression (FLIC) algorithm
based on the median edge predictor and Golomb coder of
JPEG-LS is presented. FLIC eliminates the gradient-based
context model from the JPEG-LS standard, the most expen-
sive parts with respect to computational complexity and mem-
ory space requirements. To avoid a large context memory,
Golomb parameter is selected based on the coding states and
the prediction residuals of up to two immediate neighbors,
one in each dimension. The FLIC algorithm has low memory
footprint and dissolves the data dependencies in JPEG-LS to
facilitate parallelization. Experimental results show that the
FLIC algorithm achieves a throughput speedup factor of 3.7
over JPEG-LS with less than 4% compression performance
penalty. Lossless compression performance results further
show that FLIC outperforms other state-of-the-art standards
including JPEG 2000 and JPEG XR.

Index Terms— Lossless image compression, low com-
plexity coding, adaptive coding, parallelization, JPEG-LS

1. INTRODUCTION

Lossless image compression has been a challenging research
topic in the past decades. In the late 90s CALIC [1] and
LOCO-I [2] were introduced, which still count as the most
competitive algorithms today in terms of compression perfor-
mance and relatively low computational complexity. Because
of the better overall efficiency, LOCO-I was later standardized
as JPEG-LS [3]. Since 2000, although algorithms with im-
proved compression performance have been proposed [4-7],
less and less improvement in compression have been achieved
at significantly higher complexity than JPEG-LS.

On the other hand, both the computing architecture and
the application domain have evolved considerably since the
90s. Today various parallel computing architectures like
multi-core CPUs, GPUs and FPGAs are widely used. Data
dependencies in an algorithm limits the potential for exploit-
ing these parallel architectures, which could be crucial for
image compression tasks where the amount of input data is
large. Unfortunately, for algorithms like JPEG-LS, the prin-
ciple of context modeling introduces data dependency. With-
out special optimizations, this limits JPEG-LS to sequential

*The authors would like to thank the German Research Foundation (DFG)
for the financial support. This work has been carried out within the research
project Si 586 7/1 which belongs to the priority program DFG-SPP 1423
“Prozess-Spray”.

© EURASIP, 2012 - ISSN 2076-1465

Th. Richter

RUS Computing Center, Univ. of Stuttgart
70550 Stuttgart, Germany
e-mail: richter @rus.uni-stuttgart.de

processing and puts upper bounds on the achievable through-
put. Meanwhile, memory-and-power-constrained embedded
image processing applications are emerging, e.g. image cap-
turing systems on mobile devices and cars. The large number
of conditioning contexts in JPEG-LS (up to 367) requires a
considerable amount of memory, a disadvantage for on-chip
hardware implementations.

Relatively few works have considered the balance among
compression performance, complexity, memory efficiency
and parallelization. Two of the earlier proposals for low
complexity lossless image compression are FELICS [8] and
SFALIC [9]. FELICS uses a simple predictor based on two
neighboring pixels and a Golomb coder, and has a similar
complexity to JPEG-LS but about 15% lower compression
ratio. SFALIC uses a set of 9 predictors and a Golomb coder
and achieves about 3.6 times the throughput of JPEG-LS at
10-12% higher bit rate for 8-bit images. In FELICS, con-
texts are formulated as the prediction residual of the previous
pixel combined with all possible states of the Golomb coder,
while in SFALIC quantized prediction residuals are used to
reduce the number of contexts. For 8-bit images, FELICS
requires 28 x (8 —1) = 1792 contexts while SFALIC requires
82 x (8—1) =448 contexts. Apart from the large requirement
for context memories, their sequential Golomb parameter
adaptation [8] creates an issue for parallelization.

This work achieves low computational complexity by
eliminating the context model from JPEG-LS. The result is
a very fast lossless image compression (FLIC) codec both
memory efficient and parallelizable, with closely comparable
compression performance to JPEG-LS. The rest of this paper
is organized as follows. Section 2 briefly reviews JPEG-LS
and analyzes its memory requirement and data dependency.
The proposed algorithm is first presented in its 1-dimensional
adaptation form and then extended to the 2-dimensional adap-
tation form in Section 3. Section 4 introduces a de-emphasis
method for the limited-length Golomb code. Experimental
results on the throughput compared with JPEG-LS and com-
pression performance compared with JPEG-LS, FELICS,
JPEG 2000 and JPEG XR are presented Section 5. Finally
Section 6 concludes this paper.

2. REVIEW OF JPEG-LS: MEMORY
REQUIREMENT AND DATA DEPENDENCY

The JPEG-LS standard is based on the concept of spatial pre-
diction followed by residual coding. First, a median edge-
detecting predictor [2] is used to predict the value x of the

1920



X
Fixed Bias X[ Residual |e [ Residual |e
prediction | | cancellation | | computation mapping

Context update Golomb
{C Ir'zput Bias — ——— b arameter
alx| |pixels computation m copmputation k
Gradient

computation context index

Golomb
coding

P Quantization

woaA)s)g

[— —
flat region?

» Run mode Run mode

”| Golomb coding

Fig. 1. Functional blocks of JPEG-LS.

current pixel depending on the known neighboring values a, b
and c (cf. Fig. 1). Since the predictor requires pixels form the
upper row, a memory efficient implementation strategy is to
use a line buffer of size w41 for images with w pixels in each
row. The required memory for prediction is M =bpp-(w + 1)
bits, where bpp is the input sample precision.

The prediction residual is refined by a context-dependent
bias cancellation term. Context is formulated from the gra-
dients of surrounding pixels as {d — b, b — ¢, ¢ — a}. To
avoid context dilution and reduce the required memory, the
gradients are quantized and mapped to a set of up to 365 con-
texts. Finally, the residual e between the actual value = and
the bias-compensated prediction z is calculated, mapped to
non-negative value é and encoded by a Golomb coder. Ad-
ditional steps are performed to update the four state variables
of the current context with the residual. These variables are
used to adapt the Golomb parameter and the bias cancellation
term to the residual distribution under the current context. As
estimated in [10], for 8-bit images the four state variables re-
quire at least 34 bits of memory, and the entire context model
requires 34-365 =12,410 bits. JPEG-LS defines an alternative
run-length encoding mode dedicated to flat regions, as shown
in the bottom part of Fig. 1. The run mode delivers excellent
performance for synthetic images but is less significant for
natural images, where flat regions rarely occur.

While the context model enables higher-order entropy
coding, it causes data dependencies among pixels under the
same context, i.e. the encoding of the current pixel depends
on the results of previous encoding steps on same-context
pixels, as illustrated in Fig. 2. Such pixels must be encoded
sequentially. Unfortunately, the probability for two neighbor-
ing pixels to be in the same context is as high as 83% [11].
Although parallelization schemes such as delayed context up-
date [12] and context classification with pixel reordering [13]
have been proposed, the added computational complexity and
memory requirement for synchronization still create bottle-
necks for high speed implementations.

3. PROPOSED FLIC ALGORITHM

One rarely answered question is whether the computational
efforts, memory requirements and data dependencies implied
by context modeling are the necessary price for a competitive
compression performance. In this section, we first eliminate
context modeling from JPEG-LS based on insights into the
complexity of context modeling and its effects on the resid-
ual distribution. We then propose a fast and memory effi-

O Encoded pixel
S8 Current pixel
Current context
~—& Data dependency

O

OO0 0O
OO0
OO0

Fig. 2. Data dependencies in JPEG-LS.

cient alternative to the Golomb parameter adaptation rule in
JPEG-LS. Next the proposed adaptation is extended to the
2-dimensional case for an improved performance. Finally
the advantages of FLIC with respect to parallelization is dis-
cussed with three exemplary parallelization schemes.

3.1. Elimination of context model in JPEG-LS

Functional blocks related to the context model are the most
complex algorithmic parts of JPEG-LS, including gradient
computation, quantization, context update, bias computation
and Golomb parameter computation. Many of them require
conditional branches costly for both software and hardware.
For gradient quantization, small pre-computed lookup tables
can be used in a hardware implementation or an optimized
software implementation, whereas for blocks like bias com-
putation and Golomb parameter computation, either much
less room for optimization exists or large multi-dimensional
lookup tables are required, increasing cache misses on CPUs
and on-chip memory requirements on FPGAs. With these in-
sights, we decided to omit the gradient-based context model
and evaluate the effect on the residual statistics.

Due to the lack of context based bias cancellation, the dis-
tribution of the mapped residual value é, measured on the ITU
test image set, shows a slightly worse characteristic identifi-
able by the broadened distribution depicted in Fig. 3. It can be
seen that the distribution remains very close to that in the orig-
inal JPEG-LS (one-sided geometric distribution, OSGD). Be-
cause no more context information is maintained, the mem-
ory requirement is reduced to M = bpp- (w+1) plus some
internal variables, and is hence bounded by the image dimen-
sions. In addition the data dependency throughout the image
is no longer present. This property is of particular impor-
tance for data decomposition, and therefore for paralleliza-
tion schemes. The basic structure of the FLIC encoding al-
gorithm is now simplified to fixed predictor, residual compu-
tation, residual mapping and entropy coding. Since without
bias cancellation the residual still follows an TSGD (Lapla-
cian) distribution with only slightly worse characteristics, we
chose a Rice variant of Golomb coder which is known to be
optimal for such sources, and design an algorithm to select its
coding parameter quickly.

3.2. Fast memory efficient Golomb parameter adaptation

A Golomb coder with parameter m represents its input sym-
bol é by first encoding the value of |é/m | by a unary code fol-
lowed by a binary representation of the remainder é mod m.
This strategy becomes of course extremely simple if m = 2%,
i.e. m is a power of two, since the division can be imple-
mented by shifting. The length of the code then is then

é

b= | & v1en.

1921



0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255
1E+0 T T T T T T T T T T T T T T T T |

A
e
- JPEG-LS
——w/o adaptive bias cancellation
1E-2
A
P(e)
1E-3
ﬂ Ny 1
WA
1E5 N

Fig. 3. Statistics of the mapped prediction residual for the
original JPEG-LS and the proposed scheme.

For geometric sources with a non-negative alphabet, the ap-
propriate value of k is known to be

k = max {0, [mg2 E(;W } , (1

where E denotes the expectation value, see [14] for details.
Because the residual distribution is approximately Laplacian,
the original JPEG-LS now estimates the mean of the absolute
value of residual e (|e| ~ %) from previous pixels and uses
backwards adaptation on the encoder and the decoder to se-
lect k. Unfortunately, this strategy adapts only very slowly on
the image statistics and is only optimal under the assumption
of an ideal Laplacian residual distribution, whereas the actual
residual distribution is better described by the more general
family of generalized Gaussian sources. Thus, an alternative
approach of determining k following the idea of [15] is em-
ployed here: Let k,, be the parameter for the next coding step,
k,—1 that of the previous coding step and é,,_; the mapped
residual of the previous step. Then the adaptation process
reads as follows:

kn<—max{0, Ep_1 + {bgz(bé&‘w“ﬂ - 1} e

i.e. the adaptation tries to reduce the number of binary bits
if the unary code part Lén—l / 2’“"*1J has length zero because
the previous symbol was rather small. If, however, the unary
part has a length longer than zero, the value of k is gradually
increased to adapt to a higher error variance. This is slightly
different from the adaptation mechanism described in [15]
which employs a “fractional” adaptation rule using two pa-
rameters, kg similar to our k£ which is controlled through an
additional state variable kgrp = L - kg, and krp is adjusted
to the statistics similar to the adaptation rule (2) preceding.
However, in trying to further to reduce the complexity of the
coding process, we decided to use only a single state variable.
Hence, the value of k,, is all that needs to be stored for the
next coding step.

The adaptation rule (2) can be easily implemented by a
lookup table, which then requires (kmax + 1) X (¢gmax + 1)
entries only, where gmax is the maximum possible value for
the quotient | /2% |. The table size is necessarily limited, i.e
kmax < oo because even in the worst case é,,_; = 2PP — 1

the iteration

9brp _ 1
k() — 1, kn «— maX{O, ’VIOgQ (\‘%J + 1)—‘ — 1}

stays always bounded. A table driven approach is less prac-
tical for the original algorithm in the JPEG-LS standard [3]
because the required table would be much larger and hence
would impact e.g. the cache locality of the software or mem-
ory efficiency of the hardware.

3.3. Two-dimensional Golomb parameter adaptation

Rule (2) is a one-dimensional (1D) adaptation based on the
left neighbor. A similar strategy is to adapt the Golomb pa-
rameter from the fop neighbor. Since natural images are lo-
cally stationary in both dimensions, adapting only from the
top neighbor and adapting only from the left neighbor will
produce nearly the same compression performance. However,
by combining both adaptations as

_ ka+kb
e

where k, and k; are the adapted Golomb parameter values
given by rule (2) of the left and top neighbor respectively, an
improved coding efficiency of about 5% over 1D adaptation
has been obtained. We refer to the adaptation rule (3) as 2D
Golomb parameter adaptation.

Apparently, the 2D adaptation strategy requires buffering
the adapted Golomb parameters for the past w pixels, where
w is the image width. Hence the memory requirement is
bounded by the image dimensions. For input bpp = 8§, a
range of [0, 7] is sufficient for the Golomb parameter. Thus
3 additional bits are required for each buffered value. Based
on the discussion in Section 2, the required memory of the
FLIC encoder with 2D adaptation (FLIC-2D) is smaller than
that of the JPEG-LS encoder if w <4136.

3.4. Potential parallelization schemes

Apart from the low computational complexity, the FLIC algo-
rithm has advantages for parallelization such as localized data
dependency, fast adaptation and bounded memory require-
ment. Localized data dependency can be seen from rules (2)
and (3), i.e. the dependency now exists strictly between neigh-
boring pixels. In FLIC, because the coding parameter adapts
relatively fast to the source statistics, adaptation can restart at
the beginning of each scan line. This allows a line-based par-
allelization scheme for an FLIC-1D encoder as illustrated in
Fig. 4 (a). Assuming 8-bit images and a parallelization degree
of n, the memory required for Golomb parameter adaptation
is 3n bits. For an FLIC-2D encoder, the local data dependency
can be met by a “skewed” line-based parallelization scheme
as shown in Fig. 4 (b). Such a scheme was first proposed for
a parallel variant of JPEG-LS in [12], where a shared context
set is employed. The original delay-and-merge strategy used
to manage conflicting context updates from different paral-
lel encoding units is computationally expensive. By contrast,
the parallel FLIC-2D encoder can easily perform updates to

1922



Pixel already OPixel not yet Golomb parameter

% Current pixel )

encoded encoded adaptation direction

0000GE® - O 0000@® - O oco0o0o0l-looo0o0

0000G™® - O 000 @%0 - O 09000900

00006 - O co@doo .. O y O O|--|@» O O

: : : I : : 0000 [000O

00006 .. O e 0000 - O iTile 1|+| Tile n':
(a) (b) (©

Fig. 4. Parallelization schemes. (a) Line based parallelization
for FLIC-1D. (b) Line based parallelization for FLIC-2D. (c)
Tiling based parallelization for FLIC-2D.

the n Golomb parameter variables at the rn “current” pixel lo-
cations simultaneously, with a fixed memory requirement for
2D Golomb parameter adaptation of 3w bits. FLIC’s bounded
memory requirement is also beneficial when used in a tiling
based parallelization scheme as illustrated in Fig. 4 (c). Dif-
ferent tiles are encoded independently. If JPEG-LS is used
as the tile encoder, the required memory for context model-
ing will grow linearly with n, the number of parallel tile en-
coders. If FLIC-2D is used, however, the required memory
for Golomb parameter adaptation is always 3w bits.

4. DE-EMPHASIS OF LIMITED-LENGTH GOLOMB
CODE

To limit the buffer space required for local expansion and to
support accelerated code word readout with dedicated hard-
ware, the maximum length of the Golomb code should be
limited. A simple limitation was introduced in [2] and became
part of the official JPEG-LS standard. If the quotient part of
the Golomb code reaches the predefined threshold Qmax, a
so called “escape sequence” is encoded: unary representation
of @max followed by a direct encoding of é — 1.

The same method is also applicable for the proposed FLIC
algorithm. However, since the decoder no longer needs to per-
form context update based on the residual signal e, it is more
beneficial to encode the original value of the pixel x (instead
of é) in the escape sequence. Doing so will save the decod-
ing steps for prediction, inverse residual mapping and calcu-
lation of the original pixel value. The overall escape sequence
length is hence Qmax+1+bpp, where bpp is the input sample
precision. For example with bpp = 8, to limit the code word
length to 25 bits, a threshold of Qmax =16 would be chosen.

However, compared to an ideal Laplacian distribution
of e, an overproportional amount of escape sequences are
often generated in practical applications, and thus it is reason-
able to refine the strategy to encode these escape sequences.
All symbols with a quotient |¢/2¥] € [Qmax/2, @max)
are encoded with one additional bit in the unary part, hence
enlarging their codeword by one bit, and (Imax /2 bits in the
unary codeword part are, instead, used as an escape sequence
if |6/2%] > Qmax. One can derive that this step increases
the average codelength of an ideal Laplacian distribution
p(é) = (1 — p)p° by an amount of

AE(L) =07/ (1—9q/2) _ goq . where g=Qmax, 0=p*".
(C))

Here the first term is due to the additional bit required to en-
code the symbols between [(max /2, @max ), the second term

Table 1. Throughput comparison [Mega pixel per second,
Mpps] between FLIC and JPEG-LS.

JPEG-LS | FLIC-2D || Speedup factor
Natural images 17.4 71.3 4.08
Other images 25.2 81.8 3.24
Average 20.5 75.8 3.71

is the reduced length because of the shorter escape sequence.
Depending on p and g, this expression may be positive or neg-
ative; the loss is minor for small p, but becomes negative, i.e.
we get a coding gain, for p — 1. From Fig. 3, one can esti-
mate p =~ 0.9 and, for k = 2, § ~ 0.6 which would be in the
region where the coding loss is positive.

However, our experiments showed that the de-emphasis
lowers the overall length and improves the overall perfor-
mance by about 1%. This is no surprise considering the shape
of the distribution, namely that the tails of the distribution
are overly heavy and thus the source does not quite fit to the
Laplacian model implied to derive eqn. (4), and the tail distri-
bution is outweighing the loss.

5. EXPERIMENTAL RESULTS

The proposed FLIC encoder and decoder have been im-
plemented in C++ and their correctness have been verified
by comparing the decoded image with the original image.
Test environment for the throughput and compression per-
formance results is a computer with 2.67 GHz Core i7 920
CPU and 6 GB DDR3 RAM running a 64-bit operating sys-
tem. Twenty images from the ITU-T test image set have been
used, including thirteen natural images and seven non-natural
images (compound, medical, etc.). For a more fair compar-
ison with JPEG-LS, an ad-hoc run mode is implemented in
the software. All images are in 8-bit grayscale.

For each test image we neglected I/O time as well as tran-
sient (warm-up) phase and the average decoder throughput is
measured based on ten stable runs. Sequential decoding with-
out any parallelization have been considered. Table 1 shows
the throughput of the FLIC-2D algorithm compared with that
of JPEG-LS, measured separately for the two categories of
images in Table 2. It can be seen that FLIC achieves average
speedup factors of 4.08 and 3.24 over JPEG-LS for natural
images and synthetic images respectively. The overall aver-
age speedup factor is 3.71 for all test images. Table 2 shows
the lossless compression performance of JPEG-LS (JLS),
FELICS, JPEG 2000 (J2K), JPEG XR (JXR), FLIC-1D (1D
adaptation) and FLIC-2D (2D adaptation). We make the fol-
lowing observations: for natural images, FLIC-1D performs
almost the same as JPEG XR, and is slightly outperformed by
FELICS. FLIC-2D performs only second to JPEG LS, and is
closely followed by JPEG 2000. For low entropy non-natural
images, because of the run mode, both FLIC-1D and FLIC-
2D perform better than the other algorithms except JPEG-LS.
Overall, it can be seen that with 1-dimensional Golomb pa-
rameter adaptation, the proposed FLIC has a compression
performance penalty of 8.1% compared with JPEG-LS. As
shown in the last column of Table 2, with 2-dimensional
Golomb parameter adaptation, the performance gap between
FLIC and JPEG-LS is reduced to less than 4%. Moreover,

1923



Table 2. Lossless compression performance [Bits per pixel,
Bpp] of various lossless image codecs.

Image JLS FELICS J2K JXR  FLIC FLIC

[16] [171 [18] -1D  -2D

AERIAL2 | 5.29 5.50 544 548 574 550

BANDI 3.56 3.87 374 407 384 371

BIKE 4.36 4.62 453 482 477 453

n | BIKE3 431 4.64 465 5.02 473 448
a | CAFE 5.09 5.52 535 562 542 517
t | CATS 2.57 3.28 253 312 276 265
u | FINGER | 5.66 6.11 566 566 602 582
r | GOLD 448 475 460 474 486 4.62
a | HOTEL 4.38 4.71 459 479 480 459
1 | TOOLS 5.31 5.65 545 567 563 537
TXTURI | 6.45 6.32 683 6.85 690 6.65

TXTUR2 | 5.36 5.54 563 571 582 551

WOMAN | 4.45 4.79 451 470 482 459

Average 471 5.02 489 510 509 4386

CHART 2.84 3.52 3.08 381 3.07 296

o | CMPNDI | 1.24 2.37 213 357 130 1.26
t | CMPND2 | 1.36 2.43 215 344 147 141
h | CT 3.11 3.83 330 392 374 347
e | PC 1.65 2.86 363 629 172 151
r | TARGET | 2.19 4.21 213 358 229 231
s | US 2.63 3.28 3.04 400 277 265
Average 2.14 321 2778 409 234 223

Total average | 3.81 4.39 415 474 412 394
Gap [%] 0.0 15.1 88 244 8.1 3.3

FLIC-2D outperforms FELICS, JPEG 2000 and JPEG XR in
lossless compression efficiency by about 10%, 5% and 20%
respectively.

6. CONCLUSION

A fast and lossless image compression (FLIC) algorithm
based on JPEG-LS has been proposed. By eliminating the
context model from JPEG-LS, greatly reduced computational
complexity has been achieved. At a very low cost of compres-
sion efficiency, FLIC not only can reduce the computational
complexity and memory space requirements to a fraction of
the currently available state-of-the-art algorithms, but also
eliminates context-driven data dependencies throughout the
image, alleviating the constraints on extensive paralleliza-
tion. Software implementation of the FLIC codec has shown
3-4 times higher pixel throughput compared with JPEG-LS.
Lossless compression performance results have shown that
using the FLIC encoder with 1-dimensional Golomb param-
eter adaptation, a highly memory-efficient and fast adaptive
encoding can be achieved with about 8% performance penalty
compared with JPEG-LS, while with 2-dimensional Golomb
parameter adaptation and a moderately increased memory
requirement, the FLIC encoder shows a highly competitive
compression performance, with a gap of less than 4% com-
pared with JPEG-LS and clear gains over the other state-of-
the-art standards including JPEG 2000 and JPEG XR.

7. REFERENCES

[1] X. Wu and N. Memon, “Context-based, adaptive, lossless im-
age coding,” Communications, IEEE Transactions on, vol. 45,

[2

—

(3]

[4

—

(5]

(6]

[7]

(8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

1924

no. 4, pp. 437444, Apr. 1997.

M. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I loss-
less image compression algorithm: principles and standardiza-
tion into JPEG-LS,” Image Processing, IEEE Transactions on,
vol. 9, no. 8, pp. 1309-1324, Aug. 2000.

ISO/IEC 14495-1 | ITU-T T.87, Information technology —
Lossless and near-lossless compression of continuous-tone still
images: Baseline, Dec. 1999.

X. Li and M. Orchard, “Edge-directed prediction for loss-
less compression of natural images,” Image Processing, IEEE
Transactions on, vol. 10, no. 6, pp. 813-817, Jun. 2001.

I. Matsuda, H. Mori, and S. Itoh, “Lossless coding of still
images using minimum-rate predictors,” in Image Processing,
2000. Proceedings. 2000 International Conference on, vol. 1,
2000, pp. 132-135.

S. Takamura, M. Matsumura, and Y. Yashima, “A study on an
evolutionary pixel predictor and its properties,” in Image Pro-
cessing (ICIP), 2009 16th IEEE International Conference on,
Nov. 2009, pp. 1921-1924.

X. Wu, G. Zhai, X. Yang, and W. Zhang, “Adaptive sequen-
tial prediction of multidimensional signals with applications to
lossless image coding,” Image Processing, IEEE Transactions
on, vol. 20, no. 1, pp. 36-42, Jan. 2011.

P. Howard and J. Vitter, “Fast and efficient lossless image com-
pression,” in Data Compression Conference, 1993. DCC "93.,
Snowbird, Utah, Mar. 1993, pp. 351-360.

R. Starosolski, “Simple fast and adaptive lossless image com-
pression algorithm,” Softw. Pract. Exper., vol. 37, pp. 65-91,
Jan. 2007.

Z. Wang, A. Michael, S. Wahl, P. Werner, and S. Simon, “A
memory efficient parallel lossless image compression engine
for high performance embedded systems,” in Image and Signal
Processing and Analysis (ISPA), 2011 7th International Sym-
posium on, Sept. 2011, pp. 390-395.

M. Ferretti and M. Boffadossi, “A parallel pipelined implemen-
tation of LOCO-I for JPEG-LS,” in Pattern Recognition, 2004.
ICPR 2004. Proceedings of the 17th International Conference
on, vol. 1, Aug. 2004, pp. 769-772.

S. Wahl, Z. Wang, C. Qiu, M. Wroblewski, L. Rockstroh, and
S. Simon, “Memory-efficient parallelization of JPEG-LS with
relaxed context update,” in Picture Coding Symposium (PCS),
2010, Dec. 2010, pp. 142-145.

S. Wahl, H. Tantawy, Z. Wang, P. Werner, and S. Simon, “Ex-
ploitation of context classification for parallel pixel coding in
JPEG-LS,” in Image Processing (ICIP), 2011 18th IEEE Inter-
national Conference on, Sep. 2011, pp. 2001-2004.

D. Taubman and M. Marcellin, JPEG2000: Image Compres-
sion Fundamentals, Standards and Practice. Springer, 2002.
H. Malvar, “Adaptive run-length/Golomb-Rice encoding of
quantized generalized gaussian sources with unknown statis-
tics,” in Data Compression Conference, 2006. DCC 2006. Pro-
ceedings, Mar. 2006, pp. 23-32.

A. Moffat et al. (1999, Aug.) MG software (Version 1.2.1).
[Online]. Available: http://ww2.cs.mu.oz.au/mg/

ISO/IEC 15444-5 | ITU-T T.804, “Information technology —
JPEG 2000 image coding system: Reference software,” Aug.
2002.

ISO/IEC 29199-5 | ITU-T T.835, “Information technology

— JPEG XR image coding system — Reference software,”
ISO/TIEC JTC1/SC29/WG1 document N5973.



