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ABSTRACT
With the growing electromagnetic traffic, Electronic War-
fare (EW) systems need to be accurate or use new char-
acterizing parameters in order to discriminate at best
radar pulses. An accurate study of the Instantaneous
Frequency Law (IFL) and Rate (IFR) offers some new
opportunities. Multi-linear methods such as the High-
order Ambiguity Function (HAF) or any General Rep-
resentation of Phase Derivatives (GRPD) are often used
to estimate those parameters but not in an EW context
where short pulses and small chirp rates are recurrent.
In this article, we first describe conditions for which

those modulations can be estimated. Then, HAF and
GRPD are studied in an EW context and their perfor-
mances are compared to Cramer-Rao Bounds (CRB) to
find the most appropriate one with industrial specifica-
tions.

Index Terms— Signal Characterization, Multi-
linear Functions, CRB, Electronic Warfare

1. INTRODUCTION

Knowing accurately the parameters of a received signal
can be critical in some domains such as Electronic War-
fare (EW). Due to the increasing number of radar sys-
tems, it is necessary to find, develop and embed new
methods to characterize at best radar signals and then
the radar system. One of the possible response to this
coming problem is to study the intrapulse phase which
can often be considered as locally polynomial, especially
for radar signals.
Polynomial-Phase Signals (PPS) have been studied for

about 20 years to develop new methods able to calcu-
late precisely the signal parameters: the polynomial co-
efficients or the Instantaneous Frequency Law (IFL) and
Rate (IFR). The estimation of the polynomial coefficients
can be done with the High-order Ambiguity Function
(HAF) [1] or Polynomial-HAF (PHAF). IFL estimation
can be performed either from Time-Frequency represen-
tation – such as Short-Time Fourier Transform (STFT)
or Wigner-Ville distribution (WV) [2]. New methods in-
tending to focus on non-linear IFL have been proposed

(Polynomial WV (PWV) [3] or Complex Lag [4]). IFR es-
timation was proposed in [5] and the concept of any order
phase representation in [6]. A cyclostationary approach
has also been studied in [7] in a context of compound-
Gaussian clutter.

All mentioned methods proved their worth for estimat-
ing several constant parameters with long signals but do
not take an interest in the intrapulse phase, where in-
tentional modulations (IMOP - Intentional Modulation
On Pulse) or not (UMOP - Unintentional Modulation
On Pulse) can be found. A study on the whole pulse is
therefore inappropriate but studying less parameters and
their evolution on a short term is possible.

In this paper, we describe a method to estimate the sig-
nal modulation. We also investigate the minimal window
length needed to detect modulations. We compare two
multi-linear functions: HAF and GRPD (which includes
WV and second order phase derivative representation)
and their performances in order to find the most suitable
algorithm in an EW context. We only consider mono-
component signals, i.e. we suppose a low probability of
superposition of signals within a frequency bandwidth.

This paper is organized as follows. In section 2, con-
straints coming with multi-linear functions are dealt with.
Section 3 describes the studied functions whose perfor-
mances are presented in section 4. In section 5, we make
recommendations in order to find the most suitable al-
gorithms regarding the radar signal and with respect to
industrial specifications. Finally, sections 6 and 7 give
some concluding remarks and comments.

2. MODELLING AND CONSTRAINTS

2.1. Polynomial-Phase Signal Modelling

A radar signal received by an EW system can be generally
modelled by [8]:

x(t) = s(t) + w(t)
= A exp (jφ(t)) + w(t)

= A exp
(
j

P∑
k=0

akt
k

)
+ w(t), 0 ≤ t ≤ T, (1)
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where:
• A is the amplitude of the signal,
• φ is the phase of the signal (P -degree polynomial),
• {ak}k=0...P are the polynomial coefficients,
• w is a white complex circular Gaussian noise with
variance σ2.

According to the considered assumptions (i.e. variant
polynomial coefficients), equation (1) becomes:

x(t) = A exp
(
j

P∑
k=0

ak(t)tk
)

+ w(t). (2)

Polynomial coefficients are directly linked to IFL and
IFR by:

IFL(t) , 1
2π

dφ(t)
dt

,

IFR(t) , 1
2π

d2φ(t)
dt2

.

The proposed algorithm is inspired by a frequency
tracking algorithm proposed in [9] which aims at fol-
lowing the frequency evolution using STFT and Kalman
filtering. Its principle is to take one part of the signal
called sliding window around time step ti, consider it as
a chirp with constant polynomial coefficients and apply
any multi-linear function on it to estimate the polynomial
coefficients {ak(ti)}k=0...P .

2.2. Cramer-Rao Bound (CRB)

In [8], CRB for polynomial phase estimation are intro-
duced for a 2-degree PPS with constant parameters:

CRB {â1} = 6 f2
s

N3 SNR
= 6
N T 2 SNR

, (3)

CRB {â2} = 90 f4
s

N5 SNR
= 90
N T 4 SNR

, (4)

where fs the sampling frequency, N is the length of the
signal and T its duration (N = T/fs) and SNR is the
baseband signal-to-noise ratio defined by SNR = A2/σ2.
Let sw[ti] be the restriction of signal s on a window of

length Nw, duration Tw centred on time step ti. Around
time step ti, one can consider ak(t) ≈ ak(ti). Thus, sw[ti]
is also polynomial with constant coefficients {bk}k=0...P
expressed by:

b1 = a1(ti) + 2a2(ti)ti = 2π IFL(ti),
b2 = a2(ti) = π IFR(ti).

From equations 3 and 4 which can be applied to coef-
ficients b1 and b2, CRB for âi(ti) would be [10]:

CRB {â1(ti)} = 6
Nw T 2

w SNR

(
1 + 60

(
ti
Tw

)2
)
, (5)

CRB {â2(ti)} = 90
Nw T 4

wSNR
. (6)

Therefore, the knowledge of a1(ti) and its time mod-
ulations depend on the time step the window is centred
in (equation (5)). In others words, â1(ti) at the end of a
long pulse will highly vary due to extrapolation and the
needed knowledge of a2(ti) to estimate a1(ti). The alter-
native to this high variance is to follow the modulation
of the IFL, whose CRB do not depend on the time step
ti. Those CRB are:

CRB
{
ÎFL (ti)

}
= 1

4π2
6

Nw T 2
w SNR

, (7)

CRB
{
ÎFR (ti)

}
= 1
π2

90
Nw T 4

w SNR
. (8)

In what follows, CRB
{
ÎFL(ti)

}
and CRB

{
ÎFR(ti)

}
will be expressed in dBMHz and in dBMHz/µs.

2.3. Windows Length Constraints

Usually, the only considered constraint for PPS is [5]:

|ak| ≤
π

k
(
N−1

2
)(k−1)

fks

. (9)

But constraints can also appear for small parameters.
For example, in a radar context, chirp rates usually ranges
from 1 to 10MHz/µs (some exceptions can be found with
several hundred MHz/µs). From equation (6), it ensues
that the minimal window length (with no SNR threshold
consideration and in the case of an unbiased estimator)
is:

N ≥ 5

√√√√ 90 f4
s

π2 CRB
{
ÎFR(ti)

}
SNR

. (10)

In figure 1, the minimal window size is depicted ac-
cording to SNR and the chirp rate. For instance, for
SNR=10dB, at least 250 samples are needed to detect a
chirp rate of 5MHz/µs with a mean squared error (MSE)
of -10dBMHz/µs (i.e. a mean error of 30%, which is a
typical domain value), not counting the SNR threshold.

To detect any modulation of the chirp rate (expressed
with coefficient a3 - around 10MHz/µs2), according to
the formula available in [8], the minimal window size of
signal would be around 400,000 samples. Because it is not
calculable, a3 coefficient will be considered as negligible.

3. MULTI-LINEAR FUNCTIONS METHODS

3.1. High-order Ambiguity Function (HAF)

The High-order Instantaneous Moment (HIM) of order K
for a signal s is defined by [1]:

MHAF
K [s, ti, τ ](t) =

K−1∏
q=0

[
s(∗q)(t− ti − qτ)

](K−1
q )

, (11)
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Fig. 1: Minimal window size needed to estimate different
chirp rates for a MSE

{
ÎFR(ti)

}
=-10dBMHz/µs with a

sampling frequency fs = 1GHz.

where:

• t ∈
[
ti − Tw

2 , ti + Tw

2
]
,

• s(∗q)(t) =
{
s(t) if q is even
s∗(t) if q is odd .

The phase of momentMHAF
k [s, ti, τ ] is expressed by

ΦMHAF
K

(t) = k!τk−1bk(t− ti) +[
(k − 1)!τk−1bk−1 − 0.5k!(k − 1)τkbk

]
.

If we consider the Fourier transform PK [s, ti, τ ] of
MHAF

K [s, ti, τ ], called the High-order Ambiguity Func-
tion, defined by

PK [s, ti, τ ] (f) =
∫ ∞
−∞
MHAF

K [s, ti, τ ] (t)e−j2πftdt,

it results that

b̂k = 1
2πk!τk−1 argmax

f
|PK [s, ti, τ ] (f)| . (12)

According to [8], the minimal asymptotic variance for
K = 2 or 3 is given for τ = Nw

K . Thus, coefficient b2
is estimated by calculating momentMHAF

2 [s, ti, τ ] (t) =
s(t − ti)s∗(t − ti − Nw

2 ) and its Fourier transform. Co-
efficient b1 is given after demodulation of signal s by
exp(−jb̂2(t−ti)2) and the calculation of the Fourier trans-
form of these demodulated signal. The main drawback of
this method is that the estimate of b1 depends on b̂2.

3.2. Generalized Representation of Phase Deriva-
tive (GRPD)

To calculate coefficients b1 and b2, consider the moments:

MGRP D

1 [s, ti](τ) = s(ti + τ

2 )s∗(ti −
τ

2 ),

τ ∈ [−Tw, Tw] , (13)
MGRP D

2 [s, ti](τ) = s(ti −
√
τ)s(ti +

√
τ),

τ ∈
[
−T 2

w/4, T 2
w/4

]
, (14)

whose respective phases ΦMGRP D
1

and ΦMGRP D
2

are:

ΦMGRP D
1

(τ) = (b1 + 2b2ti) τ,

ΦMGRP D
2

(τ) = 2b2τ +
[
2b0 + 2b1ti + 2b2t

2
i + 4b2ti

√
τ
]
.

As proposed in [11], if we consider a time origin of
−Nw−1

2 , coefficient b1 is estimated by the relation:

b̂1 = 2π argmax
f

∣∣∣∣∫ ∞
−∞
MGRP D

1 [s, ti] (τ)e−j2πfτdτ
∣∣∣∣ . (15)

After substitution, a Fourier transform can be applied
toM2[s, ti] to estimate b2:

b̂2 = π argmax
f

∣∣∣∣∫ ∞
−∞
MGRP D

2 [s, ti] (τ)e−j2πfτdτ
∣∣∣∣ . (16)

Unlike HAF, estimating b1 with GRPD does not de-
pend on b̂2.

4. RESULTS

To evaluate differences between algorithms, we compare
HAF and GRPD methods to two others used for less crit-
ical issues:

Direct Derivation: this method consists in a phase cal-
culation, a phase unwrapping and calculations of the
first and second derivatives to obtain the IFL and
the IFR and then the polynomial coefficients:

ÎFL(ti) = 1
2π

angle
(
s(ti + Tw

4 )
)
− angle

(
s(ti − Tw

4 )
)

Tw

2
,

ÎFR(ti) =
ÎFL

(
ti + Tw

4
)
− ÎFL

(
ti − Tw

4
)

Tw

2
.

Polynomial Fitting: the phase is calculated, un-
wrapped and fitted to a polynomial using the method
of least squares to obtain the coefficients.

4.1. Mean Squared Error Evaluation

To evaluate the performances of the algorithms, we con-
sider a sampling frequency of 1GHz. Polynomial coef-
ficients have been calculated so as to describe a chirp
with central frequency of 100MHz and a chirp rate of
5MHz/µs. The simulation is run over 10,000 times on
256-sample windows. FFTs are calculated with a 214-
sample zero padding. Results of this simulation are de-
picted in figure 2.

Figure 2a shows the mean squared error for the IFL
estimation for each algorithm. For HAF and GRPD al-
gorithm, both MSE have a similar behaviour according
to the SNR. After filtering, signals usually have a SNR
ranging from 0dB to 10dB, a choice between those two
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(a) MSE
{

ÎF L(ti)
}

in dBMHz .

(b) MSE
{

ÎF R(ti)
}

in dBMHz/µs.

Fig. 2: Estimation of MSE
{
ÎFR(ti)

}
and

MSE
{
ÎFL(ti)

}
for IFL(ti) = 100MHz and IFR(ti) =

5MHz/µs with fs = 1GHz and Nw=256 samples.

algorithms cannot be done just by focusing on the IFL
estimation.
After studying figure 2b which depicts the MSE for the

IFR, we see that the SNR threshold is 1dB smaller for the
GRPD algorithm than for the HAF. We can also remark
that the GRPD is closer to the BCR. This SNR threshold
difference is due to the dependence of the IFR to estimate
the IFL in the HAF algorithm. But it is not significant
enough to prefer one algorithm to an other. We prefer to
focus on the bigger gap between the derivative or poly-
nomial fitting that are actually used and the multilinear
methods, the latter having a smaller SNR threshold and
whose MSE tend towards the CRB.

Estimation of both parameters by the direct derivation
algorithm is unbiased but less efficient than the other
one due to its high vulnerability to noise and the use
of arctangent function which is not linear. Estimation
via polynomial fitting also tends towards the CRB but
for higher SNR because of the use of the same arctangent
function.

Note that a plateau can appear for SNR>20dB for HAF
algorithm for both figures, due to the FFT precision. This
can be corrected by increasing the zero padding.

(a) MSE{ÎF L} for Nw=256 samples

(b) MSE{ÎF L} for Nw=1024 samples

Fig. 3: Estimation of MSE
{
ÎFL

}
in dBMHz for IFL=

100MHz and IFR=5MHz/µs without considering IFR for
the calculation of IFL estimate. fs=1GHz.

The small difference between the two multi-linear
method can be considered as negligible. On longer pulses
this difference no longer exists. Because the EW context
is critical, a choice would be done on the reliability of the
values. Because estimation of the IFL by the HAF algo-
rithm depends on the IFR estimation, we would tend to
prefer the GRPD algorithm.

4.2. Need of demodulation in the HAF algorithm

Because coefficient b2 is negligible compared to f2
s , one

can wonder if not considering b2 in the algorithm would
affect the estimation of coefficient b1. In other words,
does the demodulation step during HAF algorithm worth
it in terms of computing operations? Simulations are
performed considering a chirp rate ranging from 1 to
50MHz/µs. IFL is estimated with 256-sample and 1024-
sample windows with algorithms considering, or not, the
IFR estimate. In figure 3, MSE for both methods can be
compared to the CRB.

According to figure 3a, not considering the b2 coeffi-
cient does not affect estimation of b1 in the HAF until
IFR<20MHz/µs if the window has 256 samples. Beyond
this value, difference can be observed and increases to
1dB. On the other hand, with 1024-sample window (fig-
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Category 1 2 3 4
IFL(MHz) some hundred
IFR (MHz/µs) 1 to 20 0 >50 0
Number of >1000 some dozen >1000
Samples or hundred
Applied HAF GRPD GRPD GRPD
Methods GRPD
Window length >1024 >256 >64 < Ts/fs

Gain for ÎFR >20dB >16dB >8dB –

Table 1: Radar categories, their parameters and corre-
sponding chosen methods with fs ≈ 1GHz.

ure 3b), differences between algorithms can be seen from
some MHz/µs.
Determining from figures 3a and 3b a threshold beyond

which the demodulation is needed may be too ambitious,
nevertheless, we can consider that demodulation is not
necessary in the special case of EW and UMOP applica-
tions.

5. APPLICATION TO EW CONTEXT

Radar signals can be splitted into 4 categories:
1. Long pulse, lasting several µs e.g. FMCW radar,

with generally a small chirp rate,
2. Short pulse with no chirp rate, lasting less than 1µs,
3. Short pulse with chirp rate,
4. Long pulse with phase code like QPSK or Barker

signals with symbol duration Ts.
In table 1, parameters for each category are listed and

we propose an algorithm to study any signal frequency.
The last row describes the gain of MSE

{
ÎFR

}
of the ap-

plied method versus the direct derivation for given win-
dow size and for a signal with parameters given in 4.2.
The choice highly depends on the signal length. A short

signal implies the use of GRPD whereas a long one can
also be processed by HAF. Nevertheless, from table 1, we
can conclude that polynomial methods are highly recom-
mended versus direct derivation which is currently used
in EW systems. For phase code signal, we must have
Tw � Ts to detect any frequency modulation between
symbol change. Because symbol duration is often small,
the use of GRPD algorithm is thus recommended.

6. DISCUSSION

Results presented in this article have to be moderated.
First, we consider chirp rates around 5MHz/µs. This
range of chirp rates is often found but it is not character-
istic. Moreover, radar signals can also have phase codes.
That’s why the sliding window principle can not be gen-
eralized to all signals. Usually, long radar pulses have a
small chirp rate which enables the use of large windows.

But short pulses have a greater chirp rate which enables
the use of shorter windows with 64 samples or even 32.

Secondly, the minimal size given by (10) and depicted
in figure 1 is a lower bound. Parameters such as the SNR
threshold or the estimator efficiency must be considered
and increasing the size of the window to have at the end
the given MSE is recommended.

7. CONCLUSION & FUTURE WORK

We have introduced theoretically the limits of multi-linear
functions by showing the minimal length of a signal to
describe parameters that can be found in an EW context.
We have compared different methods to finally choose the
most appropriate one in a radar context and for several
categories of radar signals. The next step of this study is
the application of the appropriate method to actual radar
signals with a view of discrimination and identification.
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