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ABSTRACT

In [1], the authors have approached the sphere-like surfaces

using the tensor product of an algebraic cubic spline quasi-

interpolant with a 2π-periodic Uniform Algebraic Trigono-

metric B-splines (UAT B-splines) of order four. In this pa-

per, we improve the results given in [1], by introducing a

new quasi-interpolant based on the tensor product of an al-

gebraic cubic spline quasi-interpolant with a periodic cubic

spline quasi-interpolant, obtained by the periodization of an

algebraic cubic spline quasi-interpolant. Our approach allows

us to obtain an approximating surface which is of class C2

and with an approximation order O(h4). We show that this

method is particularly well designed to render 3D closed sur-

faces, and it has been successfully applied to reconstruct hu-

man organs such as the left ventricle of the heart.

Index Terms— B-spline, Quasi-interpolant, Sphere-like

surface, Medical imaging.

1. INTRODUCTION

Let S be a sphere-like surface, i.e. a surface of R3 which is

topologically equivalent to a sphere. Assume that we have a

set of scattered points P1, . . . , Pd located on S , along with

real numbers r1, . . . , rd associated with each of these points.

As in practice these numbers are derived, in general, from ex-

periments and are almost always noisy, we are interested in

this paper to find a function F defined on S which approxi-

mates them in the sense that

F (Pi) ' ri, 1 ≤ i ≤ d. (1)

Data fitting problems where the underlying domain is a

sphere-like surface arise in many areas, including e.g. geo-

physics and meteorology where S is taken as a model of earth

(see [6]), and in medical modeling where S may be the sur-

face of a human organ like heart, lung, bladder, kidney, etc.

In most of these applications, the function F is constructed

so that its associated closed surface SF = {F (s)s, s ∈ S} is

at least continuous. In some cases, the C1 or C2 continuity is

required.

This recherche is supported by URAC 0 5 .

Several methods have been proposed in the literature in

the past fifteen years for fitting scattered data on sphere-like

surfaces. For a survey of these methods on the sphere see [6]

and references therein. Some other methods based on specific

techniques have been developed in [7 ], [8 ], [9 ], [10 ], [11] and

[12 ].

Among the methods developed for solving Problem (1)

and based on quasi-interpolants, we encounter tensor spline

methods. The principle of these methods consists in convert-

ing Problem (1) to one defined on a rectangle. More specif-

ically and without loss of generality, when the surface S is

the unit sphere, it can be identified with the rectangle H =
[−π

2 ,
π
2 ]× [0, 2π] by the mapping χ defined by

χ : H −→ S

(θ, φ) −→




cos(θ)cos(φ)
cos(θ)sin(φ)

sin(θ)


 .

The representation f of F in polar coordinates, defined on

H by f = Foχ, is identical to that of F , i.e. Sf = SF =
{f(θ, φ)χ(θ, φ), (θ, φ) ∈ H}. H owever, the smoothness

properties of f are not equivalent to those of its corresponding

closed surface Sf . More specifically, the surface Sf = SF is

of class Cp, p = 0, 1, 2, on S if and only if f ∈ Cp and

satisfies the following (2p+ 2) conditions:

f(θ, 0) = f(θ, 2π), (C1)

f(±
π

2
, φ) = c±, (C2)

∂f

∂φ
(θ, 0) =

∂f

∂φ
(θ, 2π), (C3)

∂f

∂θ
(±

π

2
, φ) = a±cos(φ) + b±sin(φ), (C4)

∂2f

∂φ2
(θ, 0) =

∂2f

∂φ2
(θ, 2π), (C5)

∂2f

∂θ2
(±

π

2
, φ) = d± + e±cos(2φ) + f±sin(2φ), (C6)

with a±, b±, c±, d±, e± and f± are real constants (see [2 ]).

N ow, if we set Fp = {f ∈ Cp(H) : conditions (C1) −
(C2p+ 2) hold}, then the problem of finding F such that SF
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is of class Cp and satisfies F (Pi) ' ri, 1 ≤ i ≤ d, be-

comes equivalent to finding f belonging to Fp and satisfies

f(θi, φi) ' ri, 1 ≤ i ≤ d, where (θi, φi) are the polar coor-

dinates of Pi, i.e. χ(θi, φi) = Pi.

Since the problem is now posed on a rectangular domain, it is

natural to use a tensor spline method. Then, in this case, the

quasi-interpolant emanating from such method for approxi-

mating f has the following form

f̃(θ, φ) =
m∑

i=1

n∑

j=1

ci,jvi(θ)ṽj(φ) (2 )

where {v1, . . . , vm} (resp. {ṽ1, . . . , ṽn}) is a linearly inde-

pendent set of functions on [−π
2 ,

π
2 ] (resp. on [0, 2π]).

In Section 2 , we give some preliminary results on cubic

polynomial B-splines and we construct an associated quasi-

interpolant of order four. In Section 3 , we construct the pe-

riodic quasi-interpolant based on cubic polynomial B-splines

of order four. Section 4 , is devoted to the construction of a lo-

cal quasi-interpolant on the sphere. Finally, in Section 5 , we

illustrate the performance of the method with some numerical

tests (see Figure 2 and Figure 3) and applications to the left

ventricle of the heart (see Figure 5).

2 . QUASI-INTERPOLANT BASED ON CUBIC

POLY NOM IAL B-SPLINES

In this section we construct a quasi-interpolant based on cubic

polynomial B-splines which will be used in Section 4.

For I = [−π
2 ,

π
2 ] and a given positive integer n, let Θn =

{θi}
n+ 3
i=−3, with mesh length h = π

n , be a uniform partition of

the interval I defined by




θi = −
π
2 + ih for i = 0, ..., n

θ−3 = θ−2 = θ−1 = −π
2

θn+ 1 = θn+ 2 = θn+ 3 = π
2

The associated polynomial spline space of order 4 is defined

by

S4(I,Θn) = {s ∈ C
2 : s|[θi,θi+1] ∈ P3},

where P3 is the polynomial space of degree ≤ 3. The clas-

sical normalized cubique B-splines B4
i satisfy supp(B4

i ) =
[θi, θi+ 4] and B4

i (θ) > 0, for θi < θ < θi+ 4. They form

a partition of unity, i.e.
∑n+ 3

i=1 B4
i (θ) = 1 and the family

{B4
i , i = 1, . . . , n+ 3} forms a basis of S4(I,Θn).

We now construct a local linear operator Q1 which maps a

given function f onto the cubic spline space S4(I,Θn) and

which has an optimal approximation order. This operator is

the C2 cubic spline quasi-interpolant defined by

Q1f :=
n+ 3∑

i=1

µi(f)B
4
i , (3 )

where the coefficients µi(f) are defined as linear combina-

tions of some values and derivatives of f on the set Θn in

order to have the exactness of the quasi-interpolantQ1 on P3,

i.e. Q1p = p, for all p ∈ P3.

More specifically, these coefficients are defined as follows

µ1(f) = f(−
π

2
),

µ2(f) = f(−
π

2
) +

h

3
f ′(−

π

2
),

µ3(f) = f(−
π

2
) + hf ′(−

π

2
) +

h2

3
f ′′(−

π

2
),

µi(f) =
1

6
(−f(θi−3) + 8f(θi−2)− f(θi−1)), 4 ≤ i ≤ n,

µn+ 1(f) = f(
π

2
)− hf ′(

π

2
) +

h2

3
f ′′(

π

2
),

µn+ 2(f) = f(
π

2
)−

h

3
f ′(

π

2
),

µn+ 3(f) = f(
π

2
).

Using classical theorems of approximation, see for example

[3 ], we can easily prove that

‖Q1f − f‖∞,I = O(h4).

3 . PERIODIC QUASI-INTERPOLANT BASED ON

CUBIC POLY NOM IAL B-SPLINES

In this section we construct a periodic quasi-interpolant based

on cubic polynomial B-splines. It is obtained by the peri-

odization of the quasi-interpolant introduced in Section 2.

More precisely, for J = [0, 2π] and a given positive integer

m, let Φm = {φj}
m+ 3
j=−3, with mesh length k = 2π

m , be a

uniform partition of the interval J defined by





φj = jk for j = 0, ...,m
φ−3 = φm−3, φ−2 = φm−2, φ−1 = φm−1

φm+ 3 = φ3, φm+ 2 = φ2, φm+ 1 = φ1

Then, this quasi-interpolant, can be written in the form

Q2f :=

m+ 3∑

j=1

νj(f)B
4
j , (4 )

where

νj(f) =
1

6
(−fj−3 + 8fj−2 − fj−1), for 1 ≤ j ≤ m+ 3,

and fj = f(φj), ∀j.
It easy to see that for any periodic fonction f ∈ C4(J) of

period 2π we have

‖Q2f − f‖∞,J ≤ Ck4‖f (4)‖∞,J ,

where C is a constant independent of m (see [4 ]).
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4 . QUASI-INTERPOLANT ON THE SPHERE

N ow, we construct in this section a quasi-interpolant Q ob-

tained by the tensor product of Q1 and Q2 defined in the pre-

ceding sections. This quasi-interpolant is given by

Qf(θ, φ) :=
n+ 3∑

i=1

m+ 3∑

j=1

µi(νj(f))B
4
i (θ)B

4
j (φ) (5 )

where

f ∈ F2 = {s ∈ C2(H) : conditions (C1)− (C6) hold}.
It is obvious that this local linear operator Qf is of class

C2 onH and with an approximation ordre O(h4).

5 . NUM ERICAL RESULTS AND APPLICATIONS TO

M EDICAL IM AGING

5 .1. Co m p a r a is o n a n d a p p lic a t io n t o s y n t h e t ic d a t a

To test the general performance of our method on synthetic

data, we use the following function f defined explicitly on

the rectangular domainH by

f(θ, φ) =
3∑

i=1

(gi(θ, φ))
−1/2,

where

gi(θ, φ) =
(

cos(θ)cos(φ)
αi

)2

+
(

cos(θ)sin(φ)
αi+1

)2

+
(

sin(θ)
αi+2

)2

with

(α1, α2, α3, α4, α5) = (5, 1, 2, 5, 1), (see Figure 1).

It is easy to verify that f ∈ {s ∈ C2(H) : conditions
(Ci) are satisfied, ∀i = 1, ..., 6} (see [5 ]).

We present in the following table a comparison on the

error and the computation time corresponding to the quasi-

interpolant Q and the quasi-interpolant Q̃ studied in [1], for

different values of m and n.

m n
Mean Square Error (MSE) C omputation time (seconds)

Q̃ Q Q̃ Q

5 0 5 0 1.2 63 9 0 .13 2 6×10−3 1.2 7 3 4 0 .0 4 3 2

10 0 10 0 0 .8 5 0 5 0 .0 3 4 7×10−3 9 .18 9 2 0 .0 7 8 6

15 0 15 0 0 .7 12 6 0 .0 15 6×10−3 3 0 .2 9 7 5 0 .12 14

2 0 0 2 0 0 0 .64 3 7 0 .0 0 8 9×10−3 7 1.7 0 4 1 0 .17 9 7

2 5 0 2 5 0 0 .60 2 3 0 .0 0 5 8×10−3 13 9 .4 65 4 0 .2 4 3 1

3 0 0 3 0 0 0 .5 7 4 7 0 .0 0 4 0×10−3 2 4 7 .4 5 3 4 0 .3 2 7 2

3 5 0 3 5 0 0 .5 5 5 0 0 .0 0 2 9×10−3 3 9 3 .14 0 2 0 .4 160

4 0 0 4 0 0 0 .5 4 0 2 0 .0 0 2 3×10−3 60 2 .9 5 66 0 .5 12 1

Ta b le 1. The MSE and the computation time of the quasi-

interpolant Q compared with the quasi-interpolant Q̃ given

in [1].

De fi n it io n 1 T he M S E betw een Sf an d SQf w as calculated

as follow :

M S E =
1

n.m

n∑

i=1

m∑

j=1

(Qf(θi, φj)− f(θi, φj))
2,

w here n an d m represen t the mesh siz es.

In the following figures, we illustrate the graph of the

closed surface associated with f (see Figure 1), and the graph

of the closed surface associated with Qf for m = n = 8
and m = n = 16 (see Figure 2 and Figure 3). We notice

that the reconstructed surface is closer to the originale one for

m = n = 16 than for m = n = 8.
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Fig . 1. The graph of the closed surface associated with f .
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Fig . 2 . The graph of the closed surface associated with Qf
for n = 8 and m = 8.
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Fig . 3 . The graph of the closed surface associated with Qf
for n = 16 and m = 16.
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5 .2 . Ap p lic a t io n t o m e d ic a l im a g in g

Medical imaging provides an ideal field to test the validity of

our quasi-interpolation method. For example, the left ventri-

cle of the human heart is a muscle hollow area that can be

considered closed. In this regard, we consider 1024 points

of the real surface of the left ventricle. So that we can re-

construct the closed surface associated with the left ventricle

using our quasi-interpolantQ (see Figure 5). We first convert

the data on the rectangleH using the application χ. Then, we

apply the method of least squares that distributes these data

evenly over the rectangleH (see Figure 4). Finally, we recon-

struct the closed surface associated with these data using the

quasi-interpolants Q.
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Fig . 4 . Surface mesh on the rectangle H obtained by using

the least squares method.

Fig . 5 . The closed surface associated with the left ventricle

using our quasi-interpolant Q.
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