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ABSTRACT

In this paper, we present an iterative alternating descent algo-
rithm for the problem of off-grid direction-of-arrival (DOA)
estimation under the spatial sparsity assumption. Using a
secondary dictionary we approximate the off-grid DOAs ex-
ploiting the method of Taylor expansion. In that way, we
overcome the limitation of the conventional sparsity-based
DOA estimation approaches that the unknown directions be-
long to a predefined discrete angular grid. The proposed
method (SOMP-LS) alternates between a sparse recovery
problem solved using the Simultaneous Orthogonal Matching
Pursuit algorithm and a least squares problem. Experiments
demonstrate the performance gain of the proposed method
over the conventional sparsity approach and other existing
off-grid DOA estimation algorithms.

Index Terms— Array signal processing, direction-of-
arrival estimation, sparse representations, Taylor expansion.

1. INTRODUCTION

Source localization has been an active research field due to
its fundamental role in many signal processing areas ranging
from radar and sonar to acoustic tracking. In array signal pro-
cessing, where arrays of sensors are typically employed for
the sampling of the spatial field, the problem of source lo-
calization is usually referred to as direction-of-arrival (DOA)
estimation.

The classical array processing methods can be divided
into two main categories, the parametric methods which are
based on the maximum likelihood paradigm and the spec-
tral based approaches often referred to as non-parametric
approaches [1]. The former result in accurate estimates at
the price of high computational complexity. On the other
hand, non-parametric methods are computationally attractive.
Among them the subspace-based method of multiple signal
classification (MUSIC) stands as a powerful technique to
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the problem of spectral analysis and system identification.
However, MUSIC results in decreased performance when the
incoming sources are correlated or coherent [1].

Recent advances in the field of sparse representations has
brought renewed interest to the problem of source localiza-
tion. The concept of spatial sparsity for DOA estimation was
first introduced in [2], where it was shown that the source lo-
calization problem can be cast as a sparse recovery problem in
a redundant dictionary using the `1-SVD method. Under cer-
tain assumptions `1-SVD can achieve super-resolution even
in the coherent sources scenario.

However, the sparse representation framework assumes
that the sources arrive from directions that belong into a pre-
defined discrete set of possible angles. Therefore, if the un-
known DOAs are not in this angular grid the performance
of these methods will degrade due to errors caused by mis-
matches. On the other hand, there is a trade off between the
number of sensors and the spatial resolution. If the spatial
resolution is too high, then the resulting dictionary will be
highly redundant with highly correlated entries. Therefore,
the model will not meet the compressed sensing requirement
of incoherence for robust recovery [3].

In this paper, we investigate the problem of off-grid DOA
estimation and propose a fast iterative alternating descent al-
gorithm improving the performance of the DOA estimation
based on sparsity constraints.

2. BACKGROUND

2.1. DOA estimation with sparsity constraints

Consider a uniform linear array (ULA) of M sensors with
inter-sensor spacing d. For simplicity without loss of gen-
erality, we assume that K plane waves propagating from
the far-field impinge on the array from the unknown angles
θ1, θ2, . . . , θK that we wish to estimate. Assuming no multi-
path propagation and that the signals are narrowband with
central frequency fc, each sensor captures a superimposition
of the incoming signals with time delays (phase differences)
of τp, which are functions of the signals’ DOAs θi.
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The linear array response to the impinging plane wave can
be expressed as:

a(θi) =
[
ejωcτ1(θi), ejωcτ2(θi), . . . , ejωcτM (θi)

]T
. (1)

Substituting ωc = 2πfc and τp(θi) = (p− M+1
2 )d cos(θi)/c,

where d is the sensor spacing which is chosen at half the
wavelength d = λ/2, λ = c/fc is the wavelength and c is
the speed of the propagation, we obtain:

a(θi) =
[
e−jπ

M−1
2 cos(θi), . . . , ejπ

M−1
2 cos(θi)

]T
. (2)

Following the concept of spatial sparsity, we discretize the an-
gular space into N >> K possible angles of arrival and con-
struct an overcomplete dictionary of N atoms, corresponding
to the impulse responses of the array:

A =
[
a(θ1), . . . ,a(θN )

]
. (3)

The sensor measurements can then be modelled as:

y(t) = Ax(t) + n(t). (4)

Subsequently, according to the Lasso method [4] one can at-
tempt to solve the optimization problem:

min
x
‖y(t)−Ax(t)‖22 + λ‖x(t)‖1 (5)

where x(t) is a N × 1 vector containing K non-zero entries.
In the case of multiple time snapshots, assuming that the

plane waves impinge on the array from fixed locations, the
problem can be formulated as a multi-measurement vector
(MMV) sparse recovery problem.

2.2. Off-grid DOA estimation methods

As discussed in Section 1, one limitation of the above model
is that it assumes that the unknown directions fall into the pre-
defined angular grid. Recently, H. Zhu et al. [5] addressed the
problem of off-grid DOA estimation and developed a method
to solve the total least squares problem with sparsity con-
straints. In this work, the authors propose the sparse regular-
ized total least squares (SRTLS) algorithm in order to solve
the problem:

x̂(t) = min
x,n,E

‖
[
E,n(t)

]
‖2
F

+ λ‖x(t)‖1

s. t. y(t) + n(t) = (A + E)x(t).
(6)

SRTLS in an iterative fashion alternates between estimates
of x and E. It first solves the Lasso problem for fixed E
using the interior point solver SeDuMi and then by setting the
derivative of (6) with respect to E to zero it updates the matrix
E using the formula:

E = [y(t)−Ax(t)]xT (t)[I + x(t)x(t)]−1. (7)

The algorithm terminates when the difference between two
consecutive iterations becomes smaller than a threshold.

Furthermore, the work in [6] also addresses the problem
of off-grid DOA estimation from a Bayesian perspective. The
proposed sparse bayesian inference (SBI) algorithm is an iter-
ative algorithm, applicable in both cases of single and multi-
ple snapshots by modelling the off-grid mismatches as a Tay-
lor approximation problem. Other related work includes the
continuous Basis Pursuit algorithm [7].

In the following Sections, inspired by the SRTLS and SBI
algorithms, we propose the SOMP-LS algorithm which uses
the Simultaneous Orthogonal Matching Pursuit (SOMP) al-
gorithm [8] at the first stage and then updates the dictionary
with a least squares (LS) inversion.

3. THE PROPOSED APPROACH

3.1. Problem Formulation

Suppose now that the i-th plane wave impinges on the array
from the angle θ̃i that is not contained in the selected angular
grid, namely θ̃i /∈ {θ1, . . . , θN}. In such a case, as described
in [6], the corresponding vector a(θ̃i) for the off-grid DOA
can be approximated by the first order Taylor expansion:

a(θ̃i) = a(θi) + b(θi)(θ̃i − θi) (8)

where θi ∈ {θ1, . . . , θN} is the nearest angle of the grid and
b(θi) is the first derivative of a(θi) with respect to θi:

b(θi) = −jπ sin(θi)p ◦ a(θi) (9)

where p =
[
−M−1

2 ,−M−3
2 , . . . , M−1

2

]T
and ◦ denotes the

element wise Hadamard product. It follows that we can de-
fine the redundant M ×N matrix B with atoms b(θi) for all
N angles of the grid. The off-grid DOA model can then be
formulated:

y(t) = [A + B∆θ]x(t) + n(t) (10)

with ∆θ = diag(δ), δ = [δ1, . . . , δN ]T and δi = θ̃i − θi.
In the above system of equations (10) both δ and x(t) are
unknowns and therefore after taking multiple time snapshots
we need to solve:

min
X,δ
‖δ‖22 + ‖Y − [A + B∆θ]X‖2F + λ‖X‖1,2. (11)

However, the problem of equation (11) is non-convex
and therefore it cannot be tackled using convex optimization.
Thus, in what follows we propose an alternating descent algo-
rithm that iteratively shifts between estimates of X and δ until
the update of the specific matrices is no longer significant.

3.2. Proposed Algorithm

A sub-optimal way to solve the non-convex optimization
problem in equation (11) is to reduce the problem to convex
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by minimizing over one parameter at a time. To do this, we
can first look for a solution to the reqularized least squares by
keeping the unknown vector δ fixed and solve for X. There-
fore, at the k-th iteration of the algorithm we need to solve
the MMV sparse recovery problem:

min
Xk
‖Xk‖1,2 s.t. ‖Y − [A + B∆k−1

θ ]Xk‖
F
≤ ε. (12)

The sparse MMV problem (12) can be solved by mixed `1/`2
minimization or alternatively by greedy approaches such as
SOMP, which assume joint sparsity over the multiple vectors.

Once X has been updated, we minimize over δ keeping
the current estimate of X fixed. In this case, the problem of
equation (11) reduces to:

min
δk
‖δk‖

2

2 + ‖Y − [A + B∆k
θ ]Xk‖2F . (13)

The problem (13) can be proven to have a closed form solu-
tion [5]. However, instead of taking the derivative and solving
for δk, we note that for a single snapshot the problem of (13)
is equivalent to the least squares problem:

y(t)−Axk(t) = B∆k
x(t)δ

k (14)

where ∆k
x(t) = diag(

[
xk1(t), . . . , xkN (t)

]
).

Considering now T time snapshots, it is straightforward
to vectorize the resulting T least squares problems: y(1)−Axk(1)

...
y(T )−Axk(T )

 =

B∆k
x(1)

...
B∆k

x(T )

 δk. (15)

Therefore, at the k-th iteration the update to δ will be:

δk = B†
∆k

X

Rk (16)

where B∆k
X

= [B∆k
x(1), . . . ,B∆k

x(T )]
T and Rk = Y −

AXk.
The proposed algorithm assumes that the sparsity level,

namely the numberK of the impinging on the ULA sources is
known a priori. After obtaining T time snapshots an optional
pre-processing step follows to reduce the dimensionality of
the MMV problem by applying singular value decomposition
(SVD) to the M × T measurement matrix Y. Therefore, by
thresholding its singular values and obtaining the largest K
among them, we form the M ×K measurement matrix YSV

reducing the dimensionality of the problem, in a similar man-
ner to the `1-SVD algorithm.

The proposed alternating descent algorithm (Algorithm 1)
is initialized with δ0 = 0N×1 and the K-term approxima-
tion to the problem (12) is obtained by running the SOMP
algorithm for K iterations. Next, δ is updated through equa-
tion (16). The algorithm iterates between these two steps and

Algorithm 1 SOMP-LS Alternating Descent algorithm
1: Input: A, B, Y, K, mIts
2: Initialize: k ← 0, δ0 ← 0,
3: while k ≤ mIts do
4: k ← k + 1
5: Xk ← SOMP([A + B∆k

θ ],Y,K)
6: Rk = Y −AXk, B∆k

X
= [B∆k

x(1), . . . ,B∆k
x(T )]

T

7: δk = B†
∆k

X

Rk

8: if ‖δk − δk−1‖ ≤ε then exit; end if
9: end while

10: Output: X, δ

terminates when the difference between two consecutive up-
dates of δ falls below some chosen threshold. The final val-
ues of δ provide an approximate estimate of the difference
between the nearest θi ∈ {θ1, . . . , θN} and the true DOAs
θ̃i /∈ {θ1, . . . , θN} for i = 1, . . . ,K.

When compared to SRTLS, our proposed method replaces
the Lasso solver at the regularization step with the greedy al-
gorithm that allows for faster convergence especially in the
case that multiple snapshots are considered. Therefore, the
K-term approximation of SOMP provides faster convergence
due to its algorithmic simplicity.

At the second step of dictionary update we exploit the
interpolation dictionary B and estimate the vector δ of size
N×1 instead of theM×N matrix E. As shown in the follow-
ing section, experiments favour the updating rule of equation
(16) instead of the SRTLS update of (7).

4. EXPERIMENTAL RESULTS

In this Section, we present experimental results for the eval-
uation of the proposed off-grid DOA alternating descent al-
gorithm. The algorithm is compared against the SBI algo-
rithm and the `1-SVD algorithm, which as already discussed
assumes that K sources arrive from angles that exactly match
K DOAs of the selected angular grid. For a fair comparison
with the SRTLS approach, we also derived the SOMP-TLS al-
gorithm, which under the same update rule with the proposed
method for X replaces equation (16) with:

δk = diag{B†[Y −AXk](Xk)T [I + XkXk]−1}. (17)

In the following experiments, we considered a ULA of
M = 8 sensors and the angular space [0◦, 180◦] was uni-
formly discretized with resolution of 2◦, resulting in a grid of
N = 91 potential angles of arrival {0◦, 2◦, . . . , 180◦}. There-
fore, the redundant dictionaries A and B were of size 8× 91.

4.1. Sources with off-grid DOAs

In the first experiment we considered two zero mean narrow-
band far-field sources with equal power levels arriving on the
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Table 1. Elapsed times (sec) of tested algorithms.
T = 50 T = 200

Alg/SNR 10dB -10dB 10dB -10dB
SOMP-LS 0.0056 0.0076 0.0048 0.0061

SOMP-TLS 0.0072 0.0109 0.0080 0.0080
SBI-SVD 0.1596 0.6141 0.1467 0.4361
`1-SVD 0.4406 0.3152 0.4432 0.3404

ULA from directions 60.3◦ and 88.6◦ and therefore the spar-
sity level was set at K = 2. Initially, the number of time
snapshots was T = 200 but the experiment was also repeated
for fewer time samples by setting T = 50. For all tested
algorithms, we assumed that the sparsity level K is known
a priori and the dimensionality of the measurements was re-
duced using the SVD method and thresholding the largest K
singular values corresponding to the signal subspace. The ad-
ditive noise at the sensors was white gaussian and the noise
level varied from -10 dB to 20 dB with a step size of 5 dB.
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Fig. 1. Average RMSE of DOA estimation of K = 2 sources
with off-grid directions (dB) vs SNR (dB) for T = 50 (left)
and T = 200 (right) time snapshots.

Fig. 1 illustrates the average RMSE of the DOA esti-
mation problem for all tested algorithms against the noise
level for the two considered cases of T = 50 and T = 200
snapshots. The results have been averaged over 100 trials.
As expected, `1-SVD showcases the worst performance with
the largest error in most of the cases as the directions of the
sources do not fall into the predefined angular grid. Among
the off-grid DOA estimation algorithms, the proposed method
achieves the best performance. It outperforms SOMP-TLS,
showing that the update rule of equation (16) results in better
approximations than the one in (17). SOMP-LS also performs
slightly better than the SBI algorithm in both cases.

The average convergence time of each algorithm for two
noise levels (10dB and -10dB) is shown in Table 1. In both
cases examined (T = 50 and T = 200), the proposed ap-

Table 2. Elapsed times (sec) of tested algorithms.
T = 50 T = 200

Alg/SNR 10dB -10dB 10dB -10dB
SOMP-LS 0.0034 0.0078 0.0041 0.0057

SOMP-TLS 0.0058 0.0105 0.0038 0.0073
SBI-SVD 0.1564 0.6008 0.1425 0.4127
`1-SVD 0.4020 0.3354 0.4117 0.3283

proach was the fastest and when compared to SBI, SOMP-LS
was at least 25 times faster. In most of the cases, SOMP-LS
also achieved faster convergence than SOMP-TLS.

4.2. Sources with on-grid DOAs

For the second experiment, we kept the same setting as in the
first experiment, but this time we assumed that the K = 2
sources arrive on the ULA from directions θi such that θi ∈
{0◦, 2◦, . . . , 180◦} for i = 1, 2. Subsequently, in the specific
experiment we attempted to examine the error introduced by
the off-grid DOA estimation, when the DOAs of the sources
is a subset of the discrete angular grid.
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Fig. 2. Average RMSE of DOA estimation of K = 2 sources
with on-grid directions (dB) vs SNR (dB) for T = 50 (left)
and T = 200 (right) time snapshots.

The simulation average results over 100 iterations are
summarized in Fig. 2. As can be seen, the off-grid DOA
estimation algorithms perform better than `1-SVD for high
noise levels below 0 dB, but when the SNR is above 0 dB
`1-SVD achieves the best estimation of the unknown param-
eters. However, even in this scenario the performance of the
off-grid algorithms are acceptable as the average RMSE is
less than -10 dB. Among the off-grid DOA estimation meth-
ods SOMP-LS and SBI showcase better performance than
SOMP-TLS.

Table 2 summarizes the average convergence times for all
algorithms. Once again, the proposed method achieves the
fastest overall convergence.
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4.3. Off-grid DOA estimation with correlated sources

Finally, we carried out an experiment to evaluate the algo-
rithms in the scenario when the impinging sources are highly
correlated. To do this, we kept the same setting as in the first
experiment, considering K = 2 correlated sources with di-
rections 60.3◦ and 88.6◦.
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Fig. 3. Average RMSE of DOA estimation of K = 2 corre-
lated sources with off-grid directions (dB) vs SNR (dB) for
T = 50 (left) and T = 200 (right) time snapshots.

While `1-SVD performance remains almost intact, the
performance of the off-grid DOA estimation methods dete-
riorate with SOMP-TLS algorithm resulting in poor perfor-
mance, as shown in Fig. 3. However, SOMP-LS is the least
affected algorithm by the correlated sources, outperforming
all other methods in the specific scenario. This performance
gain also seems to increase as the number of the available
time snapshots becomes larger (T = 200).

5. CONCLUSIONS

We have presented an alternating descent algorithm for the
problem of off-grid DOA estimation under the sparse rep-
resentations framework. In the typical DOA estimation ap-
proach based on the sparsity assumption, the angular space is
discretized forming a grid of potential DOAs for the incoming
sources. According to this model, the obtained sensor mea-
surements are decomposed in a redundant dictionary, which
contains the impulse responses between the ULA and all di-
rections of the discrete set. However, the unknown directions
are continuous and therefore mismatches might occur.

In the proposed framework, we formulated the problem
of off-grid DOA estimation using the Taylor expansion to ap-
proximate the true DOAs reducing the mismatch errors of the
standard approach. The proposed method, is an alternating
descent algorithm that at the first stage attempts to identify
the nearest directions of the sources to the ones included in
the initial grid using the SOMP algorithm. It then updates the

dictionary and the corresponding angular grid. The process is
repeated until the overall error is no longer reduced.

Experimental results has proven that SOMP-LS1 can
overcome the resolution limitations of the standard sparsity
model. When compared to other off-grid DOA methods such
as the SBI algorithm, it also achieved slightly better perfor-
mance, while in the coherent sources scenario the proposed
algorithm outperformed all other tested methods. The sim-
plicity of the greedy algorithm at the first stage combined
with a single least squares inversion at the second stage of
the algorithm resulted in the fastest convergence among the
compared algorithms.

In future work, we will attempt to investigate the algo-
rithm’s performance for close spaced sources and consider
alternative sparse coding schemes.
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