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ABSTRACT

This paper concentrates on lighting-based forensics. We first

show how to fool the forgery detector based on 2D lighting

coefficients using a simple counter-forensic strategy. This in-

termediary result advocates the use of more involved 3D light-

ing coefficients for forensics purposes. Such a research line

means that we need at least an approximation of the 3D sur-

face of the suspect object. Contrary to previous approaches

that concentrated on particular kind of shapes (e.g. human

faces), we propose a promising approach based on shape-

from-shading. This new 3D lighting-based forensic method

is more general as the 3D shape is learned from the picture

itself. Furthermore, the results are in par with the less general

state-of-the-art methods.

Index Terms— Digital forensics, image forgery detec-

tion, complex lighting environment, spherical harmonics,

shape-from-shading, counter-forensics

1. INTRODUCTION

With the increasing popularity and sophistication of photo

manipulation software, our trust on the authenticity of digital

images is decreasing. Doctored images can be easily found

in our daily life, and have been used, for instance, in adver-

tising, political and personal attacking, and forgery of scien-

tific results. Accordingly, many image forensic techniques

have been proposed during the last decade [1, 2], with the ob-

jective to faithfully detect image forgeries. Compared to the

authentication based on digital watermarking, forensic tech-

niques can assess the authenticity of an image in a passive and

blindway, without resorting to previously embedded informa-

tion (i.e. the watermark). These techniques make assumption

that manipulating an image will probably disturb the intrinsic

property, either geometrical, physical or statistical, of the au-

thentic image. Therefore, inconsistencies in these properties

over the image can be considered as an evidence of tampering.

In this paper, we concentrate on the physics-based im-

age forgery detection that examines inconsistencies in light-

ing under complex natural illumination. In practice, it is very
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difficult to forge physically consistent lighting when splicing

objects from different images, meanwhile experiments show

that such inconsistencies may be difficult to perceive by hu-

man eyes [3]. Lighting-based forensics have been addressed

by Johnson, Farid and Kee, under respectively simple direc-

tional lighting [4], 2D complex lighting [5] and 3D complex

lighting [6]. The basic idea of the last two methods is to first

recover the lighting environment, as represented by a group

of spherical harmonics coefficients [7], and then compare the

coefficients estimated from different parts of the image. Our

new forensic method also follows this approach.

The work presented in this paper can be thought of as

one iteration of lighting-based counter-forensics and counter-

counter-forensics. We show shortcomings of a previous

forensic method and demonstrate the possibility of develop-

ing a new lighting-based image forensic tool relying on the

most recent results from shape-from-shading research [8].

Our contributions are summarized as follows:

• First, we show, through two simple examples, that

the 2D lighting-based forensic method [5] is not com-

pletely reliable and may be vulnerable to counter-

forensic attacks.

• Second, we use the shape-from-shading technique [8]

for lighting environment estimation, which is new in

the field of image forgery detection. Our motivation

was to use 3D surface normals to estimate a more com-

plete description of the lighting environment.

• Finaly, compared to the 3D lighting-based forensic

method in [6], which relies on a predefined 3D model

and is specific to human face images, our method does

not need such a 3D model and seems more generic.

The remainder of this paper is organized as follows: Sec.

2 presents some background knowledge on lighting environ-

ment estimation, Sec. 3 depicts two simple examples to attack

the 2D lighting-based forensic method in [5], Sec. 4 describes

our new 3D lighting-based forensic tool, Sec. 5 shows some

experimental results, and we draw conclusions in Sec. 6.

2. LIGHTING ESTIMATION

In order to model complex lighting environment, we assume

that: (a) the lighting is distant; (b) the surfaces are convex and
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Lambertian; (c) the surface reflectance is constant; and (d) the

camera response is linear.

Denote L(ω) as the illumination function describing the

intensity of the incident light from direction ω which is a unit

vector. Let R(n, ω) be the reflectance function of the surface,
where n is the unit length surface normal vector. On the con-

vex surface of a Lambertian object, we suppose there are no

cast shadows or interreflections [7]. Hence, the irradiance is

only due to the lighting environment, and it can be described

as a convolution over the upper hemisphere Ω(n):

E(n) =

∫

Ω(n)

L(ω)R(n, ω)dω. (1)

A common way to approximate this function is using spher-

ical harmonics to expand both the illumination function and

the reflectance function to yield:

E(n) =

∞
∑

l=0

l
∑

m=−l

ÂlLl,mYl,m(n), (2)

where Yl,m(·) is the mth spherical harmonic of order l, with
l ≥ 0 and −l ≤ m ≤ l. Ll,m are the spherical harmonics

coefficients representing the lighting environment. Constants

Âl are the Lambertian reflectance coefficients, which decay

rapidly when l > 2. Consequently with l ≤ 2, E(n) can be

well approximated using only the first nine terms.

It is the surface diffuse albedo ρ, which is the multi-

plicative factor mapping the image irradiance to the intensity.

Without loss of generality, we assume ρ = 1 for simplicity

and I(p) = E(np) at the point p on a Lambertian surface.

Thus the lighting coefficients are estimated up to an unknown

factor. Given the estimated surface normals at k > 9 points

on the surface of an object and their intensties, it is possible

to estimate the nine 3D lighting coefficients by


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Â0Y0,0(nk) . . . Â2Y2,2(nk)
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(3)

Note i = [Ir Ig Ib]T is the image intensity for RGB color im-

ages, and ll,m = [Lr
l,m Lg

l,m Lb
l,m]T is the vector containing

the lighting coefficients corresponding to spherical harmonic

Yl,m in red, green and blue channels, respectively.

Obviously, the estimation of the 3D lighting coefficients

requests 3D surface normals. And without multiple images

or known geometry, it is always difficult to satisfy this re-

quirement [5]. Nevertheless, under the assumption of ortho-

graphic projection, the z-component of the surface normal is

zero along the occluding contours of an object. Therefore,

the spherical harmonics Y1,0, Y2,−1 and Y2,1 are all zeros,

and Y2,0 = −
√

5/16π becomes a constant. We add the

terms corresponding to spherical harmonics Y0,0 and Y2,0 to-

gether and factor Â0 and Â2 to the lighting coefficients. De-

note Â′

0 = Y ′

0,0 = 1, we can estimate L′

0,0 =
√

π/4L0,0 −

(a) GRC (b) GAL (c) Forgery

Fig. 1. Mapping (c) on (a) of the 2D lighting coefficients

taken from (b).

Table 1. Pairwise 2D lighting differences

Errors

GRC vs. GAL 0.2370
Forgery vs. GRC 0.2336
Forgery vs. GAL 2.6228× 10−5

√

5π/256L2,0. Hence, along the boundaries of an object, the

five 2D lighting coefficients we are able to compute are L′

0,0,

L1,−1, L1,1, L2,−2, and L2,2.

Forgeries are detected by comparing the lighting coeffi-

cients estimated from different objects in an image. In [5], the

authors proposed a distance measure between two lighting en-

vironments that is normalized to the interval [0, 1]. Here, we
also use this measure to evaluate lighting differences.

3. COUNTER FORENSICS

In [5], although the authors proposed the 3D lighting-based

forensic model, due to the difficulty of 3D normal estima-

tion, their main approach for forgery detection is still concen-

trated on 2D lighting-based forensic method. In this section,

we introduce two counter-forensic methods to show how 2D

lighting-based forensic method can be vulnerable.

3.1. Fooling the 2D Lighting-based Detector

We rewrite Eq. (3) in matrix form I = ML. The lighting

coefficients are obtained as the least-squares solution to the

system: L = (MTM)−1MT I. we can see that the estima-

tion of lighting coefficients needs both the surface normals

(determiningM) and the image intensities (I).

Lighting-based forensics compare the lighting coeffi-

cients from different objects to decide whether the image is a

forgery. The goal of counter-forensics is to fool the detector

so that it obtains different lighting coefficients. For an object

in the image, a simple strategy is to first keep the surface

normals unchanged to yield the same M; meanwhile, if we

succeed in modifying the pixel values along the occluding

contours, i.e. modifying I, different lighting coefficients L

can be generated.

The weakness of the 2D lighting-based forensic method

we are targeting is that it uses only the information along the

object boundaries. It should therefore be possible to create a
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(a) GAL (b) GAL forgery-1 (c) GAL forgery-2

Fig. 2. Rendered spheres from actual and fake lighting envi-

ronments.

Table 2. Comparison of estimated lighting coefficients

R G B

Fig. 2-(a)
3D 6.3× 10−4 6.9× 10−4 6.6× 10−4

2D 5.0× 10−5 4.8× 10−5 5.6× 10−5

Fig. 2-(b)
3D 0.1135 0.1233 0.1093
2D 3.5× 10−4 3.8× 10−4 3.4× 10−4

Fig. 2-(c)
3D 0.2008 0.2059 0.1947
2D 3.3× 10−4 3.7× 10−4 3.2× 10−4

fake picture by modifying the pixel values along the occlud-

ing contours, as long as the contour shape is kept the same in

order to yield the same boundary normals.

We have tested this idea on the synthetic images rendered

using the pbrt environment [9] with lighting probes main-

tained by Paul Debevec [10]. Fig. 1-(a) and -(b) are the ren-

dered Lambertian spheres with lighting probes captured in

Grace Cathedral, San Francisco (GRC) and Galileo’s Tomb,

Florence (GAL)1. In order to create the forgery of Fig. 1-(c),

we doctor the boundary pixel values according to Iforg =
MgrcLgal. We also use interpolation in the area between the

boundary and the central part (which is kept the same as the

original image of Fig. 1-(a)) to smooth the image. A visu-

ally more plausible forgery compared with Fig. 1-(c), can be

obtained, by using advanced image processing algorithms.

According to the thresholds reported in [5], the results in

Table 1 show that the image in Fig. 1-(c) successfully fools the

2D lighting-based forensic method, which mistakenly consid-

ers that Fig. 1-(b) and -(c) are from the same lighting environ-

ment. However, the truth is that the picture in Fig. 1-(c) is

a forgery created from -(a) using the 2D lighting coefficients

estimated from -(b). Note that Fig. 1 only shows the green

channel of the images, but the modification in red/blue chan-

nels can be achieved similarly.

3.2. Building upon 3D Lighting Environments

The 2D lighting-based forensic method is only able to es-

timate five lighting coefficients: L′

0,0 =
√

π/4L0,0 −
√

5π/256L2,0, L1,−1, L1,1, L2,−2 and L2,2, which cor-

respond to non-z-component-related spherical harmonics.

Among the five 2D lighting coefficients, note that L′

0,0 is the

1http://www.pauldebevec.com/Probes

combination of L0,0 andL2,0. Hence, if there are two lighting

environments with similar L0,0, L2,0, L1,−1, L1,1, L2,−2 and

L2,2 but differentL1,0, L2,−1 and L2,1, the 2D lighting-based

forensic method would fail to distinguish them. After simu-

lation, we verified that this weakness may be made use of by

opponents to perform counter-forensic attacks.

Based on the ground truth of the nine 3D lighting coeffi-

cients of lighting environment GAL, we create two lighting

environment forgeries. Fig. 2-(a) is the rendered sphere us-

ing the original lighting environment GAL, while Fig. 2-(b)

and -(c) are rendered using GAL forgeries. In GAL forgery-

1, the modification is applied to L1,0, L2,−1 and L2,1, while

one more coefficientL2,0 is added to the modification in GAL

forgery-2. And in both cases, L0,0 is modified due to the fact

that we should ensure that each value in the modified lighting

environment should be positive. But it does not increase the

lighting environment difference [5].

The figures in Table 2 are the estimation errors of RGB

channels, in both the 3D and 2D cases, as compared with the

ground truth of the GAL lighting environment. The small er-

rors in the fourth and the sixth rows in Table 2 indicate that the

2D lighting-based forensic method is successfully attacked.

3D lighting-based forensics is a more reliable choice as it still

can distinguish different lighting environments with similar

2D lighting coefficients.

4. IMPROVED LIGHTING-BASED FORENSICS

As explained in Sec. 3, it is relatively easy for opponents to

fool the 2D lighting-based forensic method by modifying the

boundary pixels. Moreover, the 2D method also fails to de-

tect different 3D lighting environments that have similar 2D

lighting coefficients.

A natural extension consists of using 3D lighting environ-

ments. Estimating a 3D lighting environment involves that

some 3D information about the shape of the underlying ob-

ject is available. Such an approach was already suggested by

Kee and Farid [6]. They focused on detecting forgeries for

human faces by matching a 3D model of a face on the image.

We propose a different approach by using shape-from-

shading (SFS) [8] to estimate the 3D normals of the underly-

ing object. Our goal is to produce a more general 3D lighting-

based forensic tool that works on objects of arbitrary shape.

As shown above, the first nine spherical harmonics (l ≤ 2)
are either constant (l = 0), linear (l = 1) or quadratic (l = 2).
As the 1st-order approximation of the Lambertian irradiance

can capture up to 87.5% of the light energy [8], the image

formation model can be simplified to a linear problem from

Eq. (3):






iT1
...

iTk






=







nT
1 1
...

...

nT
k 1







[

AT

aT

]

, (4)

whereA = Â1[l1,1 l1,−1 l1,0] and a = Â0l0,0.
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Fig. 4. A forgery with two swans inserted, and the lighting

spheres from the estimated 3D lighting coefficients.

The main idea to recover the unit surface normal vector

n∗ is to solve the following quadratically constrained linear

least-squares problem [8]:

n∗ = argmin
n

‖An− b‖2, s.t.‖n‖ = 1, (5)

where b = i − a. Once the recovered surface normals are

obtained, we can use the model of Eq. (3) to compute the

nine 3D lighting coefficients.

The process of 3D lighting coefficients estimation based

on SFS is enumerated as follows:

1. Use bicubic interpolation to coarsely estimate the sur-

face normals {n0} of the target object;

2. Estimate the linear/constant lighting coefficientsA and

a by Eq. (4);

3. Solve least-squares problem Eq. (5) at each point of the

surface to recover the surface normals {nr};

4. Add a smoothness constraint [8] to obtain the global

optimum of the surface normals {ns};

5. RecomputeA and a for another iteration of surface re-

covery using {ns} from Step 4, and repeat Steps 3-5;

6. According to Eq. (3), compute the 3D lighting coeffi-

cients by using {ns}.

5. RESULTS

The six images shown in the first row of Fig. 3 are: the

lighting probe captured in a Eucalyptus Grove, UC Berkeley

(EUC, also maintained by Paul Debevec [10]), the rendered

Stanford bunny under EUC lighting environment, the RGB

map of the recovered surface normal components, the z-

component of the recovered surface normals, the spheres

representing the actual lighting and the estimated 3D lighting

coefficients (green channel). The three figures on the very

right in the first row of Fig. 3 are the errors between the

Table 3. Errors between object pairs of Fig. 4

R G B

S-1 vs. S-2 0.0277 0.0356 0.0456
U-1 vs. U-2 0.0031 0.0035 0.0058
S-1 vs. U-1 0.4533 0.4432 0.3696
S-1 vs. U-2 0.4394 0.3902 0.3001
S-2 vs. U-1 0.4722 0.4801 0.4245
S-2 vs. U-2 0.4752 0.4314 0.3535

ground truth and the estimated 3D lighting coefficients in red,

green and blue channels respectively from up to down. And

the second/third rows of Fig. 3 are the results for the follow-

ing lighting environments: Dining room of the Ennis-Brown

House, Los Angeles, California (ENN), and Pisa courtyard

nearing sunset, Italy (PIS)2.

In the third and the fourth columns in Fig. 3, some noise

appears in the RGB map and the z-component of the 3D sur-

face normal estimates. This can be explained by the fact that

the linear image formation model in Eq. (4) is only a rough

approximation. And the crudely estimated lighting coeffi-

cients A and a therefore introduce surface normal recovery

errors when solving Eq. (5). Although the 3D surface normal

estimates are not perfect, but because k ≫ 9 in Eq. (3), the

matrixM is highly overdetermined and in practice the system

can yield good results. We have tested our 3D lighting-based

forensic method using 11 lighting probes to render Stanford

bunny. In the red channel, the average estimate error is 0.0313
with a maximum of 0.0558 and a minimum of 0.0063. In

the green channel, the average estimate error is 0.0283 with

a maximum of 0.0580 and a minimum of 0.0094. And in the

blue channel, the average estimate error is 0.0278with a max-

imum of 0.0594 and a minimum of 0.0064. Compared with

[6], for the synthetic images, we achieve better results even

without a predefined 3D model.

Shown in Fig. 4 is a forgery from [5]. We extract the

information from the bodies of the swans and the umbrellas

to establish their 3D models and the estimated surface nor-

mals are then used for 3D lighting estimation. Four light-

ing spheres with estimated 3D lighting coefficients are also

shown in Fig. 4. Qualitatively, in accordance with the results

in [5], the lighting spheres between the swans and between

the umbrellas are both very similar, while the differences of

those between the swans and the umbrellas are quite obvi-

ous. In addition, the pairwise lighting differences are sum-

marized in Table 3. Note that all the errors either between

the swans or between the umbrellas are smaller than 0.05,
similar to the differences between consistent lightings in the

simulations of [6]. Based on the significant differences of the

lighting environment between the swans and the umbrellas,

we can conclude that the picture is a forgery. Besides, instead

of only using boundary information of the objects to estimate

five 2D lighting coefficients, we are able to estimate the nine

2http://gl.ict.usc.edu/Data/HighResProbes
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0.0111
0.0094
0.0093

0.0377
0.0354
0.0322

0.0063
0.0099
0.0117

Fig. 3. From left to right are: the lighting probes, the rendered Stanford bunnies, the two results from SFS, the lighting spheres

of the actual and the estimated lighting environments, and the figures of their lighting differences in red, green and blue channels

respectively. The lighting environments from top to bottom are: EUC, ENN and PIS.

3D lighting coefficients, which is more reliable for lighting

consistency comparisons.

6. CONCLUSIONS

We have presented that in lighting-based forensics, the orig-

inal 2D lighting-based detector can be fooled by modifying

the pixel intensities around the border of the inserted object.

Therefore, we propose to use shape-from-shading to estimate

3D lighting coefficients in order to enhance the capabilities of

the forgery detector. This has the potential to make lighting-

based forensics more reliable and general.

The main issue with this new method is the estimation of

the 3D shape of the object. At present a crude estimation of

the shape seems sufficient for simple objects. Future work

consists in improving the accuracy of shape recovery and in-

vestigating the effect for more complicated objects. We also

plan to undertake comprehensive evaluation of the method by

detecting more real world forgeries.
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