
MODULAR GLOBAL VARIANCE ENHANCEMENT FOR VOICE CONVERSION SYSTEMS

H. Benisty, D. Malah, and K. Crammer

Technion, Israel Institute of Technology

Department of Electrical Engineering

Haifa, 32000, Israel

{hadasbe@tx,malah@ee,koby@ee}.technion.ac.il

ABSTRACT

Voice conversion systems aim to transform sentences said by

one speaker, to sound as if another speaker had said them.

Many statistically trained conversion methods produce muf-

fled synthesized outputs due to over-smoothing of the con-

verted spectra. To deal with the muffling effect, conversion

methods integrated with Global Variance (GV) enhancement,

have been proposed. In order to gain the benefits of GV en-

hancement, the user is restricted to apply one of these meth-

ods as a conversion method.

We propose a new GV enhancement method designed in-

dependently of any specific conversion scheme and applied

as a post-processing block. The extent of GV enhancement is

controlled through the allowed spectral distance between the

enhanced and the originally converted output, as specified by

the user. Listening tests showed that the proposed method im-

proves both quality and similarity to the target of the exam-

ined converted sentences, outperforming other enhancement

approaches that we evaluated.

Index Terms— Global Variance (GV), Gaussian Mixture

Model (GMM), Log Spectral Distance (LSD), Voice Conver-

sion.

1. INTRODUCTION

The goal of a voice conversion process is to modify spoken

sentences such that the perceived speaker is changed. Voice

conversion systems are especially useful for personalizing the

output of Text-to-Speech (TTS) systems, and can also be ap-

plicable for voice restoration, in case of vocal pathology, or

for entertainment purposes.

The identity of a speaker is mainly associated with the

spectral envelope of the speech signal, and its prosody at-

tributes: pitch, duration, and energy. Most voice conversion

methods address the spectral envelope, while the prosody val-

ues are usually linearly adjusted to match the mean values of

the features associated with the target speaker.

One of the first spectral envelope conversion methods was

based on codebook selection using hard clustering and map-

ping [1]. The resulting converted speech suffered from poor

quality due to coarse quantization.

Later, a more flexible approach was proposed using a

Gaussian Mixture Model (GMM) as a statistical tool for

characterizing the spectral envelope of the source speaker.

Least Squares (LS) approximation was used to obtain a linear

conversion between the source and target envelopes [2].

In another approach [3], the conversion parameters were

estimated by training a joint GMM for the source and target

feature vectors. Due to the averaging process used in statis-

tical modeling, these GMM-based methods produce overly

smoothed spectral envelopes, leading to muffled synthesized

outputs. Still, these are two of the most popular approaches

for spectral voice conversion to date.

Several modifications of the GMM-based conversion have

been proposed since, among these: GMM & codebook selec-

tion [4], GMM & Dynamic Frequency Warping (DFW) [5],

GMM & Weighted Frequency Warping [6], and GMM & par-

tial least squares regression [7]. Yet, these GMM-based con-

version methods report to produce muffled output speech, ap-

parently due to excessive smoothing of the temporal evolution

of the spectral envelope.

Another approach [8] aims to capture the temporal evo-

lution of the spectral envelope by applying Maximum Like-

lihood (ML) estimation. This approach also enhances the

Global Variance (GV) of the spectral features, thus increasing

their dynamic range, and hence decreasing the muffling ef-

fect. A different approach for GV enhancement was proposed

recently [9]. It uses the framework of the classical GMM

training, while constraining the GV of the converted feature

vectors to match its evaluated value for the target speaker.

Thus, the GV enhancement performed by these two methods

is intergraded into the conversion process.

We propose a new method for GV enhancement, designed

independently of a specific conversion procedure. Given a se-

quence of converted feature vectors, their enhanced version is

obtained by maximizing their GV, under a spectral distortion

constraint. The GV of the enhanced sequences is increased

up to the level where the mean spectral distance between the

converted sequence and its enhanced version reaches a pre-
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set threshold value. The method described here enables the

user to adjust the degree of GV enhancement by setting the

threshold for the allowed spectral distance from the originally

converted signal.

We evaluate our GV enhancement method by applying

it as a post-processing block on converted outcomes of the

classical GMM method [2]. The enhanced sentences were

compared to the original converted sentences, and also to

sentences converted (with integrated enhancement) by the

Constrained GMM (CGMM) method [9]. Listening tests

showed that the proposed GV enhancement method im-

proved the quality of sentences converted by the classical

GMM method [2]. In addition, most listeners preferred these

results over converted sentences obtained by CGMM [9],

both in terms of quality and similarity to the target speaker.

2. CLASSICAL VOICE CONVERSION USING GMM

We begin by briefly describing the classical GMM-based

voice conversion method [2]. Let {xq}Qq=1, {yq}Qq=1 ∈ RP

be a parallel and aligned training set consisting of feature

vectors related to the source and target speakers, respectively.

The source vectors are modeled using a GMM distribution.

The probability of a source feature vector xq is:

p (xq) =
M
∑

m=1

p (wm)N (xq;µm,Σm)

q = 1, ..., Q, (1)

where M is the number of Gaussian components, p (wm) is

the probability of component wm and N (x;µm,Σm) is a

normal distribution, with mean vector µ
m, and covariance

matrix Σm. The Expectation Maximization (EM) algorithm

is commonly used to estimate the parameters of the GMM

distribution based on the source training set.

Using the trained GMM parameters a linear conversion

function is formed:

F{x} =

M
∑

m=1

p (wm|x)
(

ν
m + Γm(Σm)−1 (x− µ

m)
)

,

(2)

where the conditional probability p (wm|x) is evaluated us-

ing the GMM parameters and Bayes’ theorem. The conver-

sion parameters {Γm,νm}Mm=1 are P × P and P × 1 ma-

trices, evaluated so that the mean squared-error between the

converted and target spectral features is minimized:

min
{Γm,νm}M

m=1

1

Q

Q
∑

q=1

‖F{xq} − yq‖22, (3)

where ‖ · ‖2 denotes ℓ2 norm.

Next, we describe our proposed stand-alone method for

GV enhancement. This method provides a controlled en-

hancement of the GV using a spectral distance constraint

between the converted and enhanced signals.

3. GLOBAL VARIANCE ENHANCEMENT USING AN

LSD CONSTRAINT

The proposed GV enhancement is designed independently

of any specific conversion scheme and is applied as a post-

processing block. The GV is maximized under a spectral

distance constraint, so that the mean distance between the

converted vectors (by some conversion method) and their en-

hanced version is restricted by a pre-set threshold value. This

threshold enables the user to control the similarity-variability

tradeoff: the GV can be further increased as the similarity is

reduced.

Let Ỹ1:T be a T × P matrix consisting of a sequence of

T converted feature vectors:

Ỹ1:T ,
(

ỹ1, ỹ2, . . . , ỹT

)⊤
, (4)

where {ỹt}Tt=1 ∈ RP and (·)⊤ denotes transpose. We fol-

low [9] and use the Normalized GV (NGV) to measure the

dynamic range of the converted spectral features:

NGV{Ỹ1:T } ,
1

P

P
∑

p=1

Var{Ỹ1:T (p)}
Var{Y (p)} (5)

where Var{Y (p)} is the empirical GV of the p-th element of

the target training vectors Y (p) = {yq (p)}Qq=1:

Var{Y (p)} =
1

Q

Q
∑

q=1

(

yq (p)− 1

Q

Q
∑

r=1

yr (p)

)2

. (6)

Let Z̃1:T be a T ×P matrix comprising the enhanced ver-

sion of the converted sequence Ỹ1:T . We set the enhanced

sequence as the solution of the following problem:

Z̃1:T = argmax
Z1:T

NGV{Z1:T }

s.t. LSD
(

Z1:T , Ỹ1:T

)

≤ θLSD,
(7)

where LSD
(

Z1:T , Ỹ1:T

)

is the mean log-spectral dis-

tance (expressed in terms of Mel Frequency Cepstral Coef-

ficients (MFCCs) in (12) below) between the enhanced and

converted sequences, Ỹ1:T and Z1:T , correspondingly, and

θLSD is a pre-set threshold value for the mean LSD in dB. If

this threshold is set to zero, the constraint must be satisfied

as equality and the converted sequence remains unchanged.

For any positive value, the NGV of the enhanced sequence

is higher than the NGV of the converted sequence Ỹ1:T ,

while the LSD between these two sequences is not larger

than θLSD. A naive approach to increase the GV would be to

just add white noise to the MFCC parameters with a variance

determined by the log-spectral threshold θLSD. As expected,

listening shows that it results in noisy converted speech and

is not a viable approach.
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We now further develop (7) in terms of explicit expres-

sions for NGV and LSD. Define C as a diagonal P × P
matrix, comprising the GV of the target spectral features eval-

uated by (6):

C , diag (Var{Y (1)},Var{Y (2)}, . . . ,Var{Y (P )}) .
(8)

Like in [9] we define a covariance operator ∆T :

∆T ,
1√
T

(

IT×T − 1

T
JT

)

∈ R
T×T , (9)

where JT is a T ×T matrix of all ones. Using (5), (8) and (9)

we write the NGV of the converted sequence Ỹ1:T as:

NGV{Ỹ1:T } =
1

P

∥

∥

∥
∆T · Ỹ1:T ·C− 1

2

∥

∥

∥

2

2
. (10)

MFCCs are commonly used as spectral features. In this

case the mean LSD between each converted vector ỹt and its

enhanced version z̃t can be approximated using the Euclidian

distance between them:

LSD (z̃t, ỹt) ≈ 10
√
2

ln 10

√

√

√

√

P
∑

p=1

(z̃t (p)− ỹt (p))
2

= κ‖z̃t − ỹt‖2 [dB], (11)

where ỹt (p) and z̃t (p) are the p-th element of the t-th time

frame of the converted and enhanced sequences, correspond-

ingly, and κ , 10
√
2/ln 10.

Therefore, the mean LSD between the two sequences is

approximated by:

LSD
(

Z̃1:T , Ỹ1:T

)

≈ κ

T

T
∑

t=1

‖z̃t − ỹt‖2

=
κ

T

∥

∥

∥
Z̃1:T − Ỹ1:T

∥

∥

∥

2,1
, (12)

where ‖ · ‖2,1 is the mixed ℓ2,1 norm [10]. Using (10) and

(12), we formulate (7) as:

Z̃1:T = argmax
Z1:T

∥

∥

∥
∆TZ1:TC

− 1
2

∥

∥

∥

2

2

s.t.

∥

∥

∥
Z1:T − Ỹ1:T

∥

∥

∥

2,1
≤ TθLSD

κ
.

We solve the problem by minimizing the Lagrangian:

L (Z1:T ) = −
∥

∥

∥
∆TZ1:TC

− 1
2

∥

∥

∥

2

2
+

+ λ

(

∥

∥

∥
Z1:T − Ỹ1:T

∥

∥

∥

2,1
− TθLSD

κ

)

.(13)

We obtain the enhanced sequence Z̃1:T that minimizes this

Lagrangian by numerically evaluating the optimal Lagrange

parameter λ∗, as detailed in App. A.

During speech synthesis, each converted sequence is re-

placed by its GV-enhanced version. Consequently, the GV is

increased, while the mean LSD between the enhanced and the

originally converted sequence is constrained by θLSD[dB].

4. EXPERIMENTAL RESULTS

4.1. Experimental Conditions

Two U.S. English male speakers taken from the CMU ARC-

TIC database [11] were the source and target speakers. We

used 50 parallel sentences for training and 50 other parallel

sentences for testing, all sampled at 16kHz and phonetically

labeled. The Harmonic Plus Noise Model (HNM) [12] was

used for analysis and synthesis by the toolkit available at [13].

MFCCs were used as spectral features (P = 24), extracted

from the harmonic amplitudes [14]. The analysis frames were

time aligned and the feature vectors were matched using a

DTW algorithm based on the phonetic labeling [6].

The pitch was converted using a simple linear function

using the mean and the standard deviation values of the source

and target speakers, f̂(y),t
0 =µ(y)+(σ(y)/σ(x))

(

f
(x),t
0 −µ(x)

)

, where

f
(x),t
0 and f̂

(y),t
0 are the pitch values of the source and con-

verted signals at the t-th frame, respectively. The parameters

µ(x) and µ(y) are the mean pitch values, and σ(x) and σ(y) are

the standard deviations of the source and target pitch values,

respectively. In this case the mean and standard deviation

of the converted pitch contour match the mean and standard

deviation of the pitch values of the target speaker. To reduce

audible artifacts, all synthesized waveforms were low-pass

filtered at a cut-off frequency of 5kHz.

Three conversion schemes were examined: the classical

GMM-based conversion [2], the classical GMM-based con-

version followed by the proposed GV enhancement scheme,

and CGMM [9]. The synthesized outputs were evaluated us-

ing both objective and subjective measures.

4.2. Objective Evaluations

We used two objective measures to evaluate the synthesized

outputs: mean Log-Spectral Distortion (LSD) between the

converted and target signals and normalized GV (NGV).

MFCCs were used as spectral features, so the mean LSD

between the converted and target signals was evaluated using

(12), and the NGV of the converted signals was evaluated

using (10). The proposed enhancement method was exam-

ined using three threshold values: 1dB, 2dB and 4dB. Several

working points were also examined for CGMM, by multiply-

ing the target NGV in the constraint term with factors smaller

than 1.

As seen in Table 1, the proposed approach increases

the NGV of the converted sentences at the expense of their

spectral similarity to the target. Allowing a higher distance

between the converted and enhanced signals leads to a further

increase of the NGV of the enhanced output. In terms of the

objective measures we examined, our method was outper-

formed by CGMM [9]: for the same NGV of 0.3, CGMM

(with a factor) achieved a lower LSD than the proposed ap-

proach did, and for the same mean LSD of 7.3dB, CGMM
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Table 1. Objective performance of the classical GMM-based

method (LS-GMM) [2] compared to its enhanced version by

the proposed approach and compared to CGMM [9].

Conversion Method Mean LSD [dB] Mean Norm. GV

LS-GMM 6.2 0.1

Enhanced, θLSD = 1dB 6.4 0.2

CGMM with a factor 0.3 6.4 0.3

Enhanced, θLSD = 2dB 6.7 0.3

Enhanced, θLSD = 4dB 7.3 0.4

CGMM 7.3 0.9

achieved a higher NGV than the proposed approach did.

However, listening tests, presented in the next subsection,

showed that the proposed approach was preferable by the

majority of listeners in terms of both similarity and quality,

when compared to the other examined approaches, including

CGMM.

4.3. Subjective Evaluations

Listening tests were carried out to subjectively assess the

performance of the examined methods. The examined signals

were compared using quality and individuality preference

tests. In the quality tests the listeners were asked to indicate

the sentence of better quality. In the individuality tests we

followed the preceding protocol [8] and the listeners were

asked to choose between two possibilities, which of the com-

pared two outcomes is more similar to a given target speaker.

In each test, 10 different randomly ordered sentences were

examined by 12 listeners (voice samples can be listened to

via the link in [15]). The group of listeners comprised 20-30

years old non-experts men and women.

We utilized the controlled enhancement to select the

best configuration, in terms of subjective quality. We set

θLSD = 2dB, as informal listening tests showed that the pro-

posed enhancement approach produced the best quality with

this threshold value. As mentioned above, several working

points were also examined for CGMM using factors smaller

than 1 multiplying the target NGV in the constraint term.

Eventually, we used the CGMM method with a factor equal

to 1 since this value leads to the best quality in our informal

listening tests.

First, we report the impact of the proposed enhancement

on the outputs of the classical conversion method [2]. The

results, presented in Fig.1(a) show that increasing the GV

indeed improved the perceived quality of the converted sen-

tences. Interestingly, the similarity to the target signal was

slightly improved, as seen in Fig.1(b), even though objec-

tively, the enhanced signal is less similar to the target speaker

in terms of mean LSD.

Second, the overall output of the classical conversion fol-

lowed by the proposed enhancement was compared to the out-

(a) (b)

Fig. 1. The classical GMM conversion method [2] compared

with the classical conversion followed by the the proposed

enhancement: (a) - quality preference test; (b) - individuality

preference test.

(a) (b)

Fig. 2. CGMM [9] compared with the classical GMM conver-

sion followed by the the proposed enhancement: (a) - quality

preference test; (b) - individuality preference test.

put of CGMM [9]. The proposed enhancement outperformed

CGMM: it was preferred in 60% of the cases in terms of qual-

ity and in 70% of the cases in terms of similarity to the target,

as seen in Figs.2(a) and 2(b), respectively.

5. CONCLUSION

One of the main shortcomings of classical spectral voice con-

version is that its synthesized outputs sound muffled. Previ-

ously proposed approaches deal with the muffling effect by

modifying the training process of the conversion.

We propose a new approach for GV enhancement de-

signed independently of any specific conversion method.

This method is based on GV maximization under a spectral

similarity constraint. The extent of enhancement is controlled

by tuning the allowed spectral distance between the enhanced

and the originally converted signal. We presented a novel

formulation for the mean LSD between two sequences of

feature vectors using an ℓ2,1 norm, so that the threshold value

for the spectral distance is specified in [dB].

Experimental results showed that for a given mean LSD,

CGMM [9] leads to higher GV than the GV value obtained

by the enhancement method proposed here. However, the new

enhancement method was selected by the majority of listeners

as better than CGMM, both in terms of quality and similarity
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to the target. Mean LSD and GV are commonly used for ob-

jective evaluation of spectral conversion methods. Still, as

shown in this paper, these objective measures do not always

agree with subjective evaluations attained by listening tests.

Further work is needed to find an alternative measure for ob-

jective evaluation of conversion systems, with better corre-

spondence to subjective results.

The proposed enhancement approach was applied here

as a post-processing block fed with the outputs of the clas-

sical GMM-based conversion. The performance of this new

approach could be further examined for other conversion

schemes.

A. APPENDIX

We derive the optimal solution that minimizes the Lagrangian

in (13), by first diagonalizing the covariance operator, ∆T =
USV⊤, and denoting:

Ψ , V⊤Z1:T , Φ , V⊤Ỹ1:T , Ω , Ψ−Φ (14)

Substituting (14) in (13) we get:

L (Ω) = −
∥

∥

∥
S (Ω+Φ)C− 1

2

∥

∥

∥

2

2

+ λ

(

‖Ω‖2,1 −
TθLSD

κ

)

(15)

Finally, taking the derivative of (16) with respect to each ele-

ment of Ω and setting it to zero, we obtain the optimal solu-

tion:

ωt (p) =
−φt (p)

1− λCp,p/2S2
t,t‖ωt‖2

. (16)

where ωt (p) and φt (p) are the (t, p) elements of Ω and Φ,

respectively, and ωt = (ωt (1) , ..., ωt (P ))
⊤

. Since ‖ωt‖2
depends on ωt (p), we use the constraint and set: ‖ωt‖2 =
θLSD/κ. One of the diagonal elements in the matrix S is

zero, so to avoid ill conditioning we assume, without loss of

generality, that it is the last one and evaluate λ using only the

first T − 1 vectors:

T−1
∑

t=1

‖ωt‖2 =
(T − 1) θLSD

κ
. (17)

Since ωt (p) explicitly depends on the Lagrange parameter λ
(see (16)), the optimal value λ∗ cannot be simply extracted

from (17). Instead, we perform a grid search and set λ∗ as

the closest value to zero where (17) is approximately sus-

tained. The enhanced sequence is finally obtained by setting

Z̃1:T (λ∗) = VΨ (λ∗), where Ψ (λ∗) = Ω (λ∗) +Φ.
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