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ABSTRACT

In this paper, we consider a downlink cooperative multicell Base sta-

tions (BSs) system where the BSs are coordinating their transmitted

signals to communicate with Mobile Stations (MSs) and both BSs

and MSs are equipped with multiple antennas. We model this mul-

ticell cooperative system under the presence of channel estimation

errors and we consider a general framework where the power that

is transmitted from the BSs to the MSs is not constrained to be uni-

form. We propose to perform a modified version of the classical ZF

beamforming where we decouple the power control and beamform-

ing processes and we derive its corresponding cooperative system

sum-rate. In order to maximize the system sum-rate, we propose a

”projected gradient” based iterative algorithm and we show that us-

ing our proposed algorithm as a power allocation policy leads to sig-

nificantly enhance the reachable multicell cooperative system sum-

rate compared to the known situation where the power of the BSs

is uniformly distributed. Simulation results are given to support our

claims.

Index Terms— Cooperative base stations, Zero-Forcing beam-

forming, channel estimation errors, projected gradient, system sum-

rate.

1. INTRODUCTION

Recently, multi-cell Base Stations (BSs) cooperation has been intro-

duced as a promising direction for LTE Advanced which is deemed

to be four generation communication systems [1]. While in previ-

ous systems Mono-Site Multiple Input Multiple Output (MIMO) has

been used, in LTE Advanced, BSs cooperation requires Multi-Site

MIMO to be deployed. This technique has the potential to mitigate

Inter-Cell Interference (ICI) and increase data rates without sacrific-

ing additional spectrum. To reach the optimal capacity of these sys-

tems, [2] showed that the mitigation of ICI can be performed thanks

to the Dirty paper coding (DPC). However, DPC is found to be rather

a complicated scheme to be implemented in practical systems. This

motivates investigation of linear and feasible precoding techniques

such as, Tomlinson-Harashima Precoding (THP) [3], Zero-Forcing

(ZF) and Block-Diagonalization (BD) beamforming [4] and [5]. In

the literature, both BD and ZF techniques are widely considered in

a full CSI case at the transmitter and when the power is evenly dis-

tributed between the users (see [5], [6] and [7]). For example, in [5],

the authors investigated a BD scheme in mono-cellular Multi-User

MIMO (MU-MIMO) system, in order to eliminate the interference

and derived the optimal power allocation based on the water-filling

technique. In [7], the authors assumed a perfect CSI knowledge in

a BS cooperative system where the BSs are subject to per-antenna

power constraints and performed a BD processing. In practice, the

perfect CSI may not be available because of the channel estimation

errors that can be due to the channel fading caused by the motion of

the Mobile Stations (MSs) in a multipath propagation environment.

In this paper, we propose to derive and then maximize the sum

rate expression in a cooperative multicell BSs system in the presence

of channel estimation errors.

2. NOTATIONS

The boldface lower case letters denote vectors and boldface upper

case letters to denote matrices. The superscripts .H , .T and .∗, de-

note the conjugate transpose, the transpose and the element wise

conjugation, respectively. IM , diag(a1, . . . ,aK) and tr refers to

the identity matrix of order M , a diagonal matrix and trace, respec-

tively. The notation C
a×b denotes a complex matrix with a rows

and b columns, ‖x‖ refers to the Euclidean distance and E is the

expectation operator.

3. SYSTEM MODEL

We consider a multicell downlink MU-MIMO system, where several

cooperative BSs coordinate their transmitted signals to the MSs via a

preprocessing matrix, in order to cancel the ICI. The two widely used

downlink preprocessing algorithms in MU-MIMO systems are: BD

and ZF beamforming (see [5],[6] and [7]). The transmission scheme

includes: M BSs (each BS is equipped with Nt transmit antennas),

K MSs (each MS is equipped with Nr receive antennas). All BSs

inter-cooperate to transmit signals to the existing MSs via a whole

set of MNt BS antennas. Each of these transmissions is defined as

a link, over which a data stream is transmitted.

The channel matrix from the mth BS to the kth MS, denoted by

H
(m)
k , includes the contribution of: a small-scale fading component

that is also known as fast Rayleigh fading, a medium-scale fading

component known as shadowing and a large-scale fading component

known as pathloss.

Small-scale fading is characterized here by a matrix C
(m)
k ∈

C
Nr×Nt where the (i, j)th entry of C

(m)
k denotes the path gain from

the jth antenna of the mth BS to the ith antenna of the kth MS and
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Fig . 1. Multicell downlink MU-MIMO system: M = 3, Nt = 2,

K = 3 and Nr = 2.

are assumed to be i.i.d. zero-mean and unit-variance complex G aus-

sian random variables. The (i, j)th element of the channel matrix

H
(m)
k is given by H

(m)
k (i, j) = αik,jmC

(m)
k (i, j) where αik,jm

encompasses both medium- and large-scale fading from the mth BS

to the kth MS.

3.1. Pe r f e c t CSI c a s e

Let Ns denote the number of data streams for the kth user, where

Ns < min (MNt, Nr). In a cooperative multicell BSs system, the

equivalent discrete-time received signal, yk ∈ C
Nr×1, at the kth

MS can be expressed as:

yk =

M∑

m=1

H
(m)
k W

(m)
k (P

(m)
k )

1

2 xk

︸ ︷︷ ︸

useful signal

+
K∑

j=1,j 6=k

M∑

m=1

H
(m)
k W

(m)
j (P

(m)
j )

1

2 xj

︸ ︷︷ ︸

interference term

+ nk
︸︷︷︸

noise

, (1)

where:

• xk ∈ C
Ns×1 is the transmitted data for the kth MS, that is

assumed to be i.i.d. and E{xkx
H
k } = INs ,

• nk ∈ C
Nr×1 denotes the complex Additive White G aussian

Noise (AWG N) with zero-mean and a covariance matrix that

is equal to σ2INr ,

• P
(m)
k = diag(p

(m)
k,1 , . . . , p

(m)
k,Ns

), where p
(m)
k,i refers to the

downlink power allocated to the ith stream of the kth MS for

the mth BS,

• W
(m)
k ∈ C

Nt×Ns represents the transmit beamforming ma-

trix for the kth MS from the mth BS.

In [4] and [5], the authors assumed that each BS allocates the same

power level to the same MS. In this paper, we consider a more gen-

eral approach where the allocated power levels from the set of BSs to

the same MS are not necessary identical. This is why the term P
(m)
k

exists in expression (1). Consider uk
(m) = W

(m)
k (P

(m)
k )

1

2 xk,

k = 1 . . .K, as the transmitted signal from the mth BS to the MSs

and define U(m) = [(u1
(m))T , . . . , (uK

(m))T ]T and where xk is

assumed i.i.d. with zero-mean and unit variance. For each mth BS,

the total transmitted power is equal to:

E
{

(U(m))HU(m)
}

=

K∑

k=1

tr
(

P
(m)
k (W

(m)
k )HW

(m)
k

)

.

In the sequel, we assume the following power constraints:

K∑

k=1

tr(P
(m)
k (W

(m)
k )H W

(m)
k ) ≤ PT , m = 1, . . . ,M, (2)

where PT is defined as the maximum total transmitted power con-

straint for each BS. This means that the allocated power to each

MS’antenna can vary from one BS to another. For the setup simplic-

ity, we assume also in the sequel that Nr = Ns. The key problem of

joint transmit processing among cooperative BSs is to define a joint

transmit beamforming matrix to cancel the ICI term of expression

(1).

In the previous work ([4] and [5]), the beamforming matrix

W̃k = [(W
(1)
k )T , . . . , (W

(M)
k )T ]T ∈ C

M Nt×Nr for the kth MS,

satisfies H̃kW̃j = 0, ∀k 6= j, where H̃k = [H
(1)
k , . . . ,H

(M)
k ] ∈

C
Nr×M Nt . The authors of [7] proposed W̃k =

[(W
(1)
k (P

(1)
k )

1

2 )T , . . . , (W
(M)
k (P

(M)
k )

1

2 )T ]T as a beamforming

matrix, which would lead to couple the beamforming and the power

control processes. This approach is not the one that we are looking

for in our paper: we are searching for the optimal power allocation

that verifies the constraint (2). The solution that we propose, consists

in conceiving normalized beamforming matrices W
(m)
k such that:

H
(m)
k W

(m)
j = 0, ∀k 6= j. (3)

Contrarily to the previous referred work, we are reasoning on each

matrix W
(M)
k and not on the block matrix W̃k in order to decouple

the normalized beamforming and the power control matrices, which

would result in further degrees of freedom in the design of the nor-

malized beamforming scheme.

3.2. Im p e r f e c t CSI c a s e

In practical situations, usually the perfect knowledge of the CSI

could not be available at the transmitter side. As such, the channel

matrix H
(m)
k can be expressed as [4]:

H
(m)
k = (Ĥe)

(m)
k +∆

(m)
k , (4)

where (Ĥe)
(m)
k and ∆

(m)
k are the estimated channel and estimation

error matrix, from mth BS to kth MS, respectively. The estimation

error matrix ∆
(m)
k is due to either the thermal noise that befoul the

channel estimation process when pilot symbols are transmitted or the

resulting prediction errors. In this paper, the channels are assumed

to be not highly frequency-selective and then the second estimation

error source that is prediction oriented, can be neglected. As a con-

sequence, the entries of ∆
(m)
k can be assumed to be i.i.d. complex

G aussian of zero-mean with a variance σ2
e that is quasi-constant and

independent from the shadowing and the pathloss levels. The entries

of (Ĥe)
(m)
k can also be assumed to be i.i.d., zero mean and uncorre-

lated with those of ∆
(m)
k . Hence, the received signal at the kth MS

1614



becomes:

yk =

M∑

m=1

(He)
(m)
k (We)

(m)
k (P

(m)
k )

1

2 xk

︸ ︷︷ ︸

useful signal

+

K∑

j=1,j 6=k

M∑

m=1

(He)
(m)
k (We)

(m)
j (P

(m)
j )

1

2 xj

︸ ︷︷ ︸

interference term

+

K∑

j=1

M∑

m=1

∆
(m)
k (We)

(m)
j (P

(m)
j )

1

2 xj

︸ ︷︷ ︸

ne
k

+nk

︸ ︷︷ ︸

bk: noise

. (5)

As we can conclude, the useful signal in (5) has the same form as the

one in the perfect CSI case (see the expression (1)). The only entity

that changes compared to the perfect CSI case, is the noise term.

For the same reasons described in Section 3.1, we should first cancel

the interference term in (5). To do so, we conceive a beamforming

matrix (We)
(m)
j that satisfies the following zero-ICI condition:

(He)
(m)
k (We)

(m)
j = 0, ∀k 6= j. (6)

4 . COOPERATIVE ZF BEAMFORMING

In this section, we consider the case of perfect and imperfect knowl-

edge of the CSI at the transmitter. We first propose to adequately

modify the existing ZF beamforming of [5] and [6] to our context in

order to mitigate the ICI effect in expression (1) and then derive the

global system sum rate expression.

4 .1. Do w n lin k ZF te c h n iq u e in t h e p e r f e c t CSI c a s e

In order to satisfy the condition given by (2), we first define an

MKNr × Nt global channel matrix as the following: Ĥ =

[(H
(1)
1 )T , . . . , (H

(M)
1 )T , . . . , (H

(1)
K )T , . . . , (H

(M)
K )T ]T and Ŵ =

[W
(1)
1 , . . . ,W

(M)
1 , . . . ,W

(1)
K , . . . ,W

(M)
K ] is the Nt × MKNr

global beamforming matrix. To verify the zero-ICI condition (3),

one possible choice of Ŵ is the pseudo-inverse of Ĥ that can exist

only if MKNr ≤ Nt:

H̄ = Ĥ
H(ĤĤ

H)−1 ∈ C
Nt×MKNr .

Then, each unit-norm column of the global beamforming matrix is

defined as:

Ŵi =
H̄i

√

(ĤĤH)i,i

, i = 1, . . . ,KMNr. (7)

Consequently, the equivalent received signal after selecting this

beamforming matrix (7) is:

yk = [ξ
(1)
k , . . . , ξ

(M)
k ]

︸ ︷︷ ︸

H̄ef f ,k∈C
Nr×M Nt







(P
(1)
k )

1

2 xk

...

(P
(M)
k )

1

2 xk







︸ ︷︷ ︸

x̃k∈C
M Nt×Nr

+nk (8)

where the matrix ξ
(m)
k = H

(m)
k W

(m)
k is by construction of the

beamforming matrix, a diagonal one. Then the kth MS rate [7] is

represented by:

RZ F ,k = log2 det
(

INr + H̄ef f,kQkH̄
H
ef f,kK

−1
)

, (9 )

where K = σ2IMNr denotes the background noise covariance and

Qk = E(x̃kx̃
H
k ). As E(xkx

H
k ) = INr , it results that:

Qk =







(P
(1)
k )

1

2

...

(P
(M)
k )

1

2







(

(P
(1)
k )

1

2 , . . . , (P
(M)
k )

1

2

)

. (10 )

Let Dk = H̄ef f,kQkH̄
H
ef f,k. Therefore,

Dk =

(
M∑

m=1

ξ
(m)
k (P

(m)
k )

1

2

)(
M∑

l=1

ξ
(l)
k (P

(l)
k )

1

2

)H

where Dk is a diagonal matrix with diagonal elements that are equal

to: Dk(i, i) = ‖

M∑

m=1

(

ξ
(m)
k (P

(m)
k )

1

2

)

(i, i)‖2. We deduce that the

sum rate for the K MSs is:

RZ F =

K∑

k=1

RZ F ,k =

K∑

k=1

Nr∑

i=1

log2

(

1 +
Dk(i, i)

σ2

)

. (11)

Our main objective is to maximize the system sum rate under the

power constraint given in (2). Taking into account the construction

of the BD beamforming matrix, W
(m)
k , it is easy to deduce that

(W
(m)
k )HW

(m)
k = INr and this implies that the power constraint

(2) becomes the following:

K∑

k=1

tr(P
(m)
k ) =

K∑

k=1

Nr∑

i=1

p
(m)
k,i ≤ PT , m = 1, . . . ,M. (12)

Let C = {p
(m)
k,i ∈ R+ such that

K∑

k=1

Nr∑

i=1

p
(m)
k,i ≤ PT , m =

1, . . . ,M} be the set of admissible solutions. our main objective

becomes to find the adequate power allocation solution that belongs

to the set C and that maximizes the system sum rate: maximize 11

subject to 12.

Solving analytically this optimization problem, isn’t straightfor-

ward. As the optimization constraint is linear, we propose to solve

this optimization problem using a ”projected gradient” based itera-

tive approach.

4 .2. Do w n lin k ZF te c h n iq u e in t h e im p e r f e c t CSI c a s e

In this section, we assume that the CSI is not perfectly known at the

transmitter. We propose to consider a BD beamforming acheme in

order to cancel the ICI under the same zero-ICI condition given by

(6). The transmission scenario is identical to the one of Section 4.1:

the power allocated from one BS to any MS is different from one BS

to another.

Using the same previous reasoning in order to construct the

beamforming matrix (We)
(m)
k , the same derivations of the CSI
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perfect case can be performed. In this case, the received signal at the

kth MS, after using the BD technique, can be expressed as follows:

yk =

M∑

m=1

(ξe)
(m)
k (P

(m)
k )

1

2 xk

+

K∑

j=1

M∑

m=1

∆
(m)
j (We)

(m)
k (P

(m)
j )

1

2 xj

︸ ︷︷ ︸

ne
k

+nk

︸ ︷︷ ︸

bk: noise

(13)

where (ξe)
(m)
k = (He)

(m)
k (We)

(m)
k and superscript .e refers to the

non-perfect CSI case as the used entities are the estimates instead of

their true values. The matrix H̄e
ef f,k has the same expression form

as for H̄ef f,k (see expression (8)). Let bk,i be the ith component of

the vector bk. As the components of xk and nk are i.i.d. with zero-

mean, the covariance matrix of the noise vector bk is a diagonal one

with diagonal terms defined as follows:

E{bk,ib
∗
k,i} = σ

2 + E
{

ein
e
k(n

e
k)

H
e
T
i

}

where the vector ei = [0, . . . , 1
︸︷︷︸

ith component

, 0, . . . , 0] represents

the ith vector of the canonical base. Furthermore, the entries of

∆
(m)
k are i.i.d., zero-mean and of variance σ2

e and are assumed to

be independent from those of xk, then E{bk,ib
∗
k,i} =

σ2 + σ2
etr

(
M∑

m=1

K∑

j=1

((We)
(m)
j )H(We)

(m)
j P

(m)
j

)

. For the same

reasons explained in the Section 4.1, we obtain ((We)
(m)
j )H(We)

(m)
j =

INr . Consequently,

E{bk,ib
∗
k,i} = σ

2 + σ
2
etr

(
M∑

m=1

K∑

j=1

P
(m)
j

)

. (14)

This means that the covariance matrix of the vector noise bk is equal

to: σ2 + σ2
e tr

(
M∑

m=1

K∑

j=1

P
(m)
j

)

Ir . According to Section 4.1, the

rate of the kth MS is expressed as:

Re
Z F ,k = log2 det

(

INr + H̄
e
ef f,kQk(H̄

e
ef f,k)

H(Ke)−1
)

,

where H̄e
ef f,k = [(ξe)

(1)
k , . . . , (ξe)

(M)
k ] and Ke is the noise co-

variance matrix: Ke =

(

σ2 + σ2
e tr

(
M∑

m=1

K∑

j=1

P
(m)
j

))

INr . We

deduce that the sum rate has the following expression:

Re
Z F =

K∑

k=1

Nr∑

i=1

log2










1 +

‖
M∑

m=1

(

(ξe)
(m)
k (i, i)

√

p
(m)
k,i

)

‖2

σ2 + σ2
etr

(
K∑

j=1

M∑

m=1

p
(m)
j,i

)










.

(15)

Our main objective keeps to optimize the system sum rate under the

power constraint C: maximize (15) subject to (12).

Again, solving analytically this optimization problem, isn’t

straightforward. As the optimization constraint is linear, we pro-

pose a ”projected gradient” based iterative algorithm to solve this

maximization problem.

5 . PROPOSED SYSTEM SUM-RATE MAXIMIZATION

ALG ORITHM

In this section, we describe our ”projected gradient” based iterative

algorithm to maximize the multicell cooperative BSs system sum

rate in the case where the channel estimation error exist. The case

of perfect channel estimation can be obtained by putting σ2
e = 0

in the obtained results. The optimal power allocation scheme is the

solution of the following optimization problem:

m in
p

(−Re
Z F ) such that p ∈ C, (16)

where Re
Z F : R

MKNr
+ → R+ is continuously and differentiable

function and the set C is closed convex and constitutes linear con-

straint. The convexity of C makes possible to use the orthogo-

nal projection onto C, denoted by PC : R
KNrM
+ → C for ob-

taining directions which are also descent ones; namely a step is

taken from pk in the direction of 5Re
Z F (p

k) (where 5 denotes

the gradient and pk is the obtained power allocation vector at the

kth iteration). The resulting vector is projected onto C. However,

the considered constraint presented by the set C is equivalent to:

g = Ap− PT [1, . . . 1]
T where g is the vector of active constraints

and the columns of the matrix A ∈ R
M×KNrM
+ are their gradi-

ents. The projection matrix is VVH where V consists of the last

(KNrM −M ) rows of the Q factor in the Q R factorization of AT .

The principle of the proposed algorithm consists in the following

main steps:

1. In it ia liz a t io n (k = 0): Take p0 ∈ C,

2. Ite r a t iv e s t e p (increment k):

• if pk is stationary, then stop.

• Otherwise pk+1 = pk + tkdk and consider dk =
VVH5Re

Z F (p
k), where tk is a positive stepsize that

is defined adequately.

6 . SIMULATION RESULTS

For the simulations setup, we consider a multicell cooperative BSs

system composed of M = 2 BSs that are equipped with Nt = 8
transmit antennas and that are coordinating their transmitted sig-

nals to K = 2 MSs equipped with Nr = 2 receive antennas.

The channels from the BSs to the different MSs are generated in-

dependently and following a G aussian distribution and taking into

account the combined effect of the pathloss and the shadowing so

that the channel estimation error σ2
e belongs to the set of values

0.01, 0.05, 0.1, 0.5. In Fig.2, for each channel estimation error σ2
e

value, we consider two situations of the considered multicell coop-

erative scheme: the first situation corresponds to a uniform power

distribution to the MSs and the second one is a power allocation pol-

icy according to our ”projected gradient” based iterative algorithm.

We plot the curves of the obtained system sum-rate in (bits/s)/Hz ver-

sus the Signal to Noise Ratio (SNR). From the obtained performance

curves, we can conclude that for both situations, the system sum-rate

decreases as the channel estimation error increases. More impor-

tantly, the simulation results do highlight that the use of our proposed

algorithm as power allocation policy, enhances the obtained multi-

cell cooperative system sum-rate compared to the frequently con-

sidered situation where the power is uniformly distributed: p
(m)
k =

PT

MNrK
.
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Fig . 2. Cooperative system sum-rate.

7 . CONCLUSIONS

In this paper, we investigated an efficient power allocation policy

that leads to significantly enhance the reachable downlink multicell

cooperative system sum-rate. This policy is performed through the

use of our proposed ”projected gradient” based iterative algorithm

that was derived in a general framework where the power is not allo-

cated identically by each BS for the same MS and where the channel

estimation errors due to the shadowing and the propagation pathloss

are considered. The obtained simulation results did highlight the sig-

nificant enhancement of the cooperative system reachable sum-rate

when using our proposed algorithm. Future perspectives include the

investigation of the extension of the obtained results in the context

of downlink-uplink transmission.
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