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ABSTRACT

This paper investigates the use of adaptive filtering with se-

lective updating in a distributed spectrum sensing network.

Through a structure similar to a set-membership filter, coeffi-

cient updating is not performed at every single input data, re-

ducing misadjustment, computational complexity and power

requirements at each sensing node. Results, presented in

terms of convergence behavior and complementary receiver

operating characteristic curves, show a substantial reduction

in the number of updates performed by the adaptive filter

without degrading the detection performance.

Index Terms— Cognitive radio, spectrum sensing, dis-

tributed detection, set-membership filtering, least mean

square algorithms

1. INTRODUCTION

Cognitive radio (CR) has emerged as the most promising

technology for dynamic spectrum management. A secondary

user (SU) employing CR technology is capable of collect-

ing data from the environment and, with the help of such

information, identifying spectral holes for opportunistic com-

munication. This capability, referred to as spectrum sensing,

optimizes the use of the transmission band even if it was pre-

viously assigned to a primary user (PU) [1]. In order to avoid

interference, the SU needs to decide reliably if the the PU is

present or not.

Independently of which detection method is used by CR

for spectrum sensing - energy detector, matched filter or fea-

ture detector -, sensing performance can be improved by spa-

tial cooperation among SUs, for a combination of their con-

tributions can produce a more reliable decision. Most ap-

proaches in cooperative spectrum sensing consider the use of

a fusion center, which collects the individual sensing infor-

mation, fuse them and make the decision. However, gather-

ing all information makes the whole network susceptible to

link failures and increases complexity of the fusion center to

process a very large amount of data, specially if the number
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of nodes is large. Furthermore, increasing distance between

radios require them to use more power of transmission, reduc-

ing autonomy [2].

A distributed approach emerges as a good alternative: the

final decision is made within each of several small neighbor-

hoods [2]. In [3], we proposed a distributed spectrum sensing

network featuring two-step data sharing among neighboring

nodes, with good performance and relative simplicity. How-

ever, this type of cooperation usually requires more commu-

nication bandwidth due to continuous exchange of informa-

tion during the sensing period. Moreover, signal processing

is now performed locally, which may increase the complexity

and energy consumption at each radio.

In order to reduce node complexity and consumption, we

introduce the concept of selective updating to spectrum sens-

ing networks using an approach similar to set-membership

adaptive filtering (SMAF) in this paper. Selective updating

means that adaptation of filter coefficients is performed only

if the input data - neighboring contributions - are jointly in-

formative. Since this does not occur for all incoming data,

the number of coefficient updates using the proposed struc-

ture can be substantially reduced, saving local computational

resources. Moreover, reducing processing makes the system

more energy-efficient. Such features are important for dis-

tributed networks in which complexity and power require-

ments at each node are desired to be as small as possible.

For cognitive radio networks, it is specially important to

guarantee reliable sensing performance. Thus, in this work,

we evaluate the proposed selective updating structure both

in terms of coefficient behavior and detection performance

through complementary receiver operating characteristic (C-

ROC) curves, considering uncorrelated and correlated node

contributions.

2. DISTRIBUTED COGNITIVE NETWORK

The distributed spectrum sensing network considered in this

work corresponds, for example, to that proposed in [3]: M

spatially distributed secondary users (nodes) employ energy

detectors [4] and simultaneously sense the environment un-

der hypothesis H0 (absence of primary signal), or hypothe-

sis H1 (presence of primary signal). Each node, say node k,
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Fig. 1. Adaptive soft combiner at node k [3].

produces a local energy estimate, yk, and shares it within its

neighborhood, Nk, defined as the set of nodes, including it-

self, linked to it, within a transmission radius [5]. Distributed

detection is then performed in two steps: soft combining step

and hard combining step. Both procedures are detailed in the

following sections.

2.1. Soft Combining Step

Let us consider the neighborhood of node k with node degree

|Nk|. The general idea of the soft combining step is summa-

rized in (1).

T (yk) =
∑

i ∈ Nk

wiyi = wT
kyk

uk=1(H1)

R
uk=0(H0)

γk (1)

First, the node k collects the vector of neighboring es-

timates, yk = [y1, y2, . . . , y|Nk|]
T, and combines such data

using the coefficient vector, wk = [w1, w2, . . . , w|Nk|]
T. Fol-

lowing, the resulting test statistic T (yk) is compared to a local

threshold γk to yield a local binary decision, uk.

According to the algorithm proposed in [3], such soft

combination is done with the coefficient vector wk that mini-

mizes the following objective function:

E[e2
k] = E[(rk − T (yk))2] (2)

that is, the mean squared error (MSE) between the local test

statistic and a reference signal, given as

rk =

{

1T
µk,0, for H0

1T
µk,1, for H1

(3)

where µk,0(µk,1) is the mean vector of yk under hypothe-

sis H0(H1), as defined in [6], and 1 is the |Nk| × 1 vector

of all elements equal to 1. Although an ideal training signal,

as modeled in (3), is not available in practice [3], achieving

such optimal coefficients can be iteratively done by using the

least-mean square (LMS) algorithm and a sufficiently accu-

rate estimate of the reference, r̂k, according to the structure

detailed in [3] and depicted in Fig. 1.

The test statistic T (yk) is a linear combination of the in-

dividual estimates yi, i ∈ Nk. If we assume that every node

uses a sufficiently large number of samples for computing yi,

such estimates may be considered Gaussian variables under

each hypothesis [4], as well as T (yk) [7]:

T (yk) ∼

{

N
(

wT
kµk,0,w

T
kΣk,0wk

)

, for H0

N
(

wT
kµk,1,w

T
kΣk,1wk

)

, for H1

(4)

where Σk,0(Σk,1) is the covariance matrix of yk under hy-
pothesisH0(H1), as defined in [6]. This allows us to evaluate
the probabilities of false alarm (Pf,k,1) and detection (Pd,k,1)
after the soft combining step using the complementary cumu-
lative distribution function, Q (·):

Pf,k,1 = P (T (yk) ≥ γk|H0) = Q

 

γk − wT
kµk,0

p

wT
kΣk,0wk

!

(5a)

Pd,k,1 = P (T (yk) ≥ γk|H1) = Q

 

γk − wT
kµk,1

p

wT
kΣk,1wk

!

(5b)

2.2. Hard Combining Step

The objective of the hard combining step is to combine the

local neighboring decisions taken at the first step in order to

obtain a local consensus decision. Specifically, the node k re-

ceives the binary decisions ui, i ∈ Nk, and uses conventional

hard combining (OR-fusion rule) through which it decidesH1

if at least one of the |Nk| nodes has suggested H1 [8].

We note that this second step is not only a fusion of infor-

mation among nodes, but primarily among neighborhoods.

In fact, each node decision ui carries information from nodes

within its own neighborhood Ni (see Section 2.1). This po-

tentially improves the performance of the OR-fusion rule

compared to its original configuration (without the first step),

but also increases the correlation among nodes’ decisions if

their respective neighborhoods share nodes in common.

The effect of the correlation among nodes (or neighbor-

hoods) to the final detection performance can be evaluated

with help of the Bahadur-Lazarsfeld expansion [9]. Let uk ∈

{0, 1}|Nk| be the local decisions of the neighborhoodNk. The

expressions of Pf,k,2 and Pd,k,2 for the OR-fusion rule are

Pf,k,2 = 1 − P (uk = [0, 0, . . . , 0]|H0) (6a)

Pd,k,2 = 1 − P (uk = [0, 0, . . . , 0]|H1) (6b)

where a more general expression for P (uk|Hh), according to

Bahadur-Lazarsfeld, is given by [9]

P (uk|Hh) =
∏

i,j,l,... ∈ Nk

P (ui|Hh)

[

1 +
∑

i<j

ρh
ijz

h
i zh

j +

∑

i<j<l

ρh
ijlz

h
i zh

j zh
l + . . . + ρh

12...|Nk|
zh
1 zh

2 . . . zh
|Nk|

]

(7)
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Note in (7) that P (uk|Hh) is a function of the correla-

tion coefficients, ρh, of the neighbors’ decisions conditioned

on hypothesis Hh. In its turn, zh
i correspond to the binary

random variable ui normalized conditioned onHh. More de-

tails about the Bahadur-Lazarsfeld expansion can be found

in [3, 9].

3. SELECTIVE UPDATING SCHEME

To obtain the coefficient updates during the soft combining

step, we propose to use a concept of selective updating similar

to that found in SMAF approaches [10]. First, we define the

constraint set of node k, Θk[n], as the set of the coefficient

vectors wk that make the output error, at filter k and instant

n, upper bounded in magnitude by γ̄k[n] [10]:

Θk[n] =
{

wk ∈ R
|Nk| :

∣

∣r̂k[n] − wT
kyk[n]

∣

∣ ≤ γ̄k[n]
}

(8)

The contributions within neighborhoodNk at instant n are

then said to be jointly informative if the constraint set Θk[n]
associated to the input data pair (r̂k[n],yk[n]) does not con-
tain the current coefficient vector wk[n], according to (8). In

this case, a new coefficient vector, wk[n+1], is formed. Oth-

erwise, the neighboring information is discarded and no coef-

ficient updating is performed.

The choice of the bound γ̄k[n] is crucial for the good per-
formance of the proposed selective updating scheme. SMAF

applications usually relate this threshold to the variance of the

observation noise at input of the adaptive filter [10]. In this

work, we consider the disturbance at output of the filter,

νk = rk − wo

T
kyk (9)

where wok is the Wiener solution for the node k. Both mean

µνk
and variance σ2

νk
of the disturbance νk can be calcu-

lated using the first and second-order statistical information

of neighborhoodNk available at node k, according to the fol-

lowing expressions:

µνk
= π0

(

(1 − wok)Tµk,0

)

+ π1

(

(1 − wok)Tµk,1

)

(10)

σ2
νk

= π0

[

(

(1 − wok)Tµk,0 − µνk

)2
+ wo

T
kΣk,0wok

]

+

π1

[

(

(1 − wok)Tµk,1 − µνk

)2
+ wo

T
kΣk,1wok

]

(11)

where π0(π1) is the a priori probability of occurrence of

H0(H1), assumed known.

Furthermore, instantaneous estimates µ̂νk
[n + 1] and

σ̂2
νk

[n + 1] can be obtained from (10) and (11), respectively,

by applying the updated coefficient vector wk[n + 1] instead
of wok. By doing so, it is possible to use a time-varying

threshold according to

γ̄k[n + 1] = αkγ̄k[n] + (1 − αk)
√

βkσ̂2
νk

[n + 1] (12)
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Fig. 2. Distributed topology with M = 12 nodes [12]. Neigh-

borhood N4 is highlighted.

where αk is a local forgetting factor and βk is a constant com-

monly set to 5 [10]. However, simulations showed that the

local parameter βk needs to be adjusted to ensure good con-

vergence for low signal-to-noise (SNR) ratio input data yk, in

which the amount of error in the estimate r̂k increases. Even

so, this proposed scheme offers significant reduction of coef-

ficient updates needed, as will be seen in Section 4.

Finally, the LMS algorithm featuring selective updating at

node k can be implemented as the following (γ̄k[1] = 0):

ek[n] = r̂k[n] − wT
k[n]yk[n] (13)

If |ek[n]| ≥ γ̄k[n]

wk[n + 1] = wk[n] + 2µkek[n]yk[n] (14)

γ̄k[n + 1] = αkγ̄k[n] + (1 − αk)
√

βkσ̂2
νk

[n + 1]

else

wk[n + 1] = wk[n] (15)

γ̄k[n + 1] = γ̄k[n]

Note that this proposed algorithm is similar to the set-

membership normalized LMS (SM-NLMS) algorithm [11].

The difference from the SMAF approach is that the step size

µk in (14) is not adjustable by the gap between the instan-

taneous output error ek[n] and the current bound γ̄k[n]. Al-

though this does not guarantee a new estimate wk[n + 1] on
the boundary of the constraint set Θk[n] [11], it is important

here to maintain a fixed step size to minimize the influence of

very large error magnitudes in the event of a wrong estimate

of the instantaneous reference r̂k[n] in (13).

4. RESULTS AND DISCUSSION

In this section, we illustrate the features of the proposed se-

lective updating algorithm in cooperative spectrum sensing

through simulations with uncorrelated and correlated node

contributions. The distributed network topology used in the

simulations is depicted in Fig. 2. Each node k generates a

total of 105 energy estimates under equal occurrence of H0

and H1 (π0 = π1 = 0.5).
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Fig. 3. Convergence behavior at node 4 using selective updat-

ing LMS: uncorrelated case.

Table 1. Percentage of updates at node 4 using selective up-

dating LMS: uncorrelated case.

Interval Updates

Transient (first 5% iterations) 26.46%
Steady state 17.00%
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Fig. 4. C-ROC performance at node 4 employing single de-

tection and distributed two-step cooperation within neighbor-

hood N4: uncorrelated case.

We consider the statistical model of yk proposed in [6]:

for the uncorrelated simulation, the covariance matrices Σk,0

and Σk,1 are identity matrices for all k. For the correlated

simulation, E[(yi−µi,h)(yj −µj,h)] = 0.5, where i and j are

index of spatially adjacent nodes (not necessarily belonging

to a same neighborhood), and µi,h and µj,h are, respectively,

the means of the random variables yi and yj under hypothesis

Hh, h ∈ {0, 1}.

Following, we present the results obtained at node 4 after

employing two-step distributed cooperation with the neigh-

borhood N4. As illustrated in Fig. 2, the neighborhood N4

is composed of nodes 4, 5, 6 and 9. The SNR ratios of the

individual estimates in N4 are equal to −1.94 dB, 0 dB, 1.58
dB and 5.1 dB, respectively (according to the expression for

individual SNR in [7]). During the soft combining step, node
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Fig. 5. Convergence behavior at node 4 using selective updat-

ing LMS: correlated case.

Table 2. Percentage of updates at node 4 using selective up-

dating LMS: correlated case.

Interval Updates

Transient (first 5% iterations) 20.00%
Steady state 13.73%
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Fig. 6. C-ROC performance at node 4 employing single de-

tection and distributed two-step cooperation within neighbor-

hood N4: correlated case.

4 runs the proposed selective updating LMS (SU-LMS) algo-

rithm with the following parameters: α4 = 0.995, β4 = 3,
µ4 = 1× 10−4 for the uncorrelated case, and µ4 = 5× 10−4

for the correlated case. Such parameters were chosen to ob-

tain equal quality of convergence for both simulations.

Fig. 3 shows the convergence behavior (after 20 indepen-

dent runs) of the adaptive filter at node 4 with uncorrelated

input data. The coefficient curves are normalized. As desired,

the coefficients converge such that they enhance the most re-

liable node contributions, i.e., with higher SNR. The associ-

ated percentage of coefficient updates taken during transient

and steady state are shown in Table 1 (the choice of the value

5% is based on the transient of γ̄4[n]). Note the considerable
reduction in the number of updates provided by the proposed

SU-LMS algorithm.
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Fig. 4 shows the C-ROC curves for node 4 after em-

ploying single detection and distributed two-step cooperation

with its uncorrelated neighbors. For comparison purposes, we

also consider the optimal linear fusion proposed in [7] for the

soft combining step. As expected, the distributed structure

outperforms the single detector. Furthermore, using the pro-

posed SU-LMS as the first step in the distributed approach

continues to offer good detection performance compared to

that achieved by using optimal linear fusion as the first step,

as already shown in [3] for the conventional LMS algorithm.

This indicates that employing selective updating does not in-

terfere in the detection performance.

The convergence behavior (after 20 independent runs) ob-

served at node 4 for the correlated simulation is presented in

Fig. 5. In this new scenario, estimates from node 5 are highly

correlated with those from its adjacent nodes 4 and 6. Note,

by the curves in Fig. 5, that the convergence occurs in such

a way that the filter minimizes the influence of the correlated

node. On the other hand, the percentage of updates shown in

Table 2 indicates again the good capability of the proposed

selective algorithm in reducing node processing.

The correspondent detection performance of node 4 for

the correlated simulation is shown in Fig. 6. We note a gen-

eral performance degradation (compared to Fig. 4) due to the

correlation among neighbors. However, again the selective

updating feature of the proposed scheme does not affect the

detection performance, and the C-ROC curve correspondent

to the distributed detection featuring SU-LMS at the first step

approaches that correspondent to the optimal linear fusion.

5. CONCLUSION

In this paper, we investigated selective updating features for

adaptive combining in cooperative spectrum sensing net-

works. Such features are specially useful in distributed net-

works in which signal processing is performed at each node.

In this sense, we proposed an LMS algorithm employing the

concept of constraint sets similar to set-membership filtering:

although not ensuring every update on the boundary of the

constraint set, such algorithm leads the adaptive filter to a

solution within the set. By doing so, the node only performs

a coefficient adaptation if its neighbors offer jointly rele-

vant information. Through simulations with uncorrelated and

correlated neighbors’ contributions, results showed that the

proposed selective updating algorithm can reduce processing

and thereby complexity at node level without affecting the

sensing performance.
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