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ABSTRACT

This paper proposes a new informed source separation tech-
nique which combines music transcription with source sep-
aration. The presented system is based on a coder/decoder
configuration where a classic (not informed) multiple- Fy es-
timation is applied on each separated source signal assumed
known at the coder before the mixing process. Thus, the extra
information required to recover the reference transcription of
each isolated instrument is computed and inaudibly embed-
ded into the mixture using a watermarking technique. At the
decoder, where the original source signals are unknown, in-
struments are separated from the mixture using the informed
transcription of each source signal. In this paper, we show that
a classic (non-informed) Fj estimator can be used to reduce
the amount of bits necessary to transmit the exact transcrip-
tion of each isolated instrument.

1. INTRODUCTION

Audio source separation aims to recover the original source
signals which compose a mixture. The under-determined
case, where the number of sources K is greater than the num-
ber of observations remains challenging and cannot efficiently
be processed by independent component analysis (ICA). This
particularly difficult configuration is often treated using signal
sparse decomposition, thus source signals are separated using
the prior knowledge about the source structure and its prop-
erties (e.g. orthogonality, harmonicity) [1, 2]. Unfortunately,
the performance of the blind approach is often insufficient for
the demanding applications and the informed approach has
been considered in more recent works.

Informed source separation (ISS) [3] proposes to use
directly the original source signals as extra information.
This approach addresses the source separation problem in
a coder/decoder configuration. At the coder, the extra infor-
mation is estimated from the separated source signals before
the mixing process and is inaudibly embedded into the signal
mixture using watermarking. At the decoder, this information
is decoded and used to assist the separation process. In spite
of good results, ISS methods are comparable to audio cod-
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ing and lossy audio compression where the resulting quality
depends on the amount of transmitted extra information. In
this particular case, the quality is related to the capacity of
the watermarking technique and a trivial solution may consist
in embedding directly the compressed original source signals
into the mixture signal with the best distortion-rate ratio.

Symbolic information approaches addressed in [4, 5] use
the aligned MIDI to assist the separation process. These tech-
niques assume that each source signal follows a harmonic
source model which is the most important part of the consid-
ered mixture. This assumption is often verified in tonal music
for the pitched instruments [6] but cannot be applied to per-
cussive instruments. Estimating a reliable and aligned tran-
scription of each separated instrument is crucial for the sep-
aration quality and remains challenging. However, this point
is often omitted by the proposed score-informed separation
methods which assume the exact score is exactly known.

Here, we propose a fully automatized source separation
system based on a coder/decoder scheme common to ISS
methods. The aligned MIDI is estimated from the separated
instruments source signals using a multiple-F|, estimator.
Thus the extra information required to recover each separated
source transcription at the decoder is computed and inaudi-
bly embedded into the mixture. At the decoder, the score is
estimated from the mixture and corrected using the extra in-
formation. Finally, the sources are separated by a state-of-art
score-informed source separation method.

This paper is organized as follows. Music transcription
framework and notations are described in section 2. Section
3 proposes a technique for informed multiple-Fy estimation.
Experiments and results are presented in section 4. Finally,
conclusions and future works are discussed in section 5.

2. MUSIC TRANSCRIPTION FRAMEWORK

We consider here a monaural discrete linear instantaneous
sound mixture composed of K distinct source signals ex-
pressed as:

z[n] = ) skn]+r(n] ey

e
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where r[n] is a residual noise signal resulting from source
modeling and the watermarking process of the proposed sys-
tem. Source separation aims to recover each source signal
sg[n] from the mixture z[n|. In this study, each source sig-
nal si[n] is assumed to be a music pitched instrument which
follows a harmonic source model as described below.

2.1. Harmonic Source Model

It has been shown that pitched instrument sounds have a spe-
cific frequency structure [6]. Thus, each individual note is
composed of one fundamental frequency, also called F{, and
several overtone partials. Quasi-harmonic sounds have over-
tone partials which are integer multiple of the fundamental
frequency. However, for natural sounds, instruments may
have shifted overtones due to inharmonicity and timbre. Thus,
harmonic source signals can be modeled as a sum of complex
exponentials according to Fourier theorem including inhar-
monicity and polyphony which can be expressed for a local
frame analysis with the stationary assumption as follows:

Ly H;
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where j2 = —1 and d(h) = /1 + h?(3 is the inharmonicity
factor depending on (3 parameter according to Fletcher and
Rossing [6]. L denotes the polyphony (the number of simul-
taneous notes per source) and H is the number of harmonics
per note. Equation (2) uses the stationary sinusoidal model
where a and ¢ denote respectively the instantaneous ampli-
tude and initial phase. The F' parameter corresponds to the
perceived fundamental frequency which is related to the mu-
sic pitch according to the following expression:

P(f) = {Premt 12log, (fﬂ (©)
f ref

where || denotes the round-to-nearest-integer operation.
P(frer) = P is the reference pitch of frequency frr. The
MIDI specifications define P(440) = 69 corresponding to
the note A,. Most frequencies of pitched instruments are in
the [27.5Hz, 7040Hz] range corresponding respectively to the
notes Ag and Ag.

2.2. Classic Multiple-F, Estimation

Music transcription aims to estimate the fundamental fre-
quency of each harmonic source present in a mixture z[n].
This task can be efficiently processed in the monophonic case
by time-domain techniques using autocorrelation or differ-
ence functions. The YIN algorithm [7] which is a reference
state-of-art method is robust to noise, computationally ef-
ficient and obtains good results for the monophonic case
(L = 1). The polyphonic case where L > 1 is still an

open issue due to overlapped components. Furthermore, it is
also difficult to estimate the polyphony and to separate the
corresponding score of each individual instrument.

Efficient state-of-art methods for music transcription es-
timate the score and the polyphony simultaneously without
separation [8, 9]. The best methods evaluated at the MIREX!
2011 reaches about 68% of accuracy for the multiple- F es-
timation task on the evaluation database. The approach pro-
posed by Yeh and Roebel [9] was implemented and integrated
into the proposed system of this study. It was used for the
transcription of each isolated source. This method obtained
particularly good results in our experiments and was shown to
be computationally less expensive than Monte Carlo Markov
Chain (MCMC) though it is based on the generation of Fj
candidates. Thus, each candidate is evaluated by a score func-
tion depending on inharmonicity, spectral envelope and time
synchronicity as detailed in [9].

3. INFORMED MULTIPLE-F;y ESTIMATION

3.1. Overall Method Description

The proposed system uses a coder and a decoder which are
respectively described in Fig. 1 and Fig. 2.
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Fig. 1. The coder.
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Fig. 2. The decoder.

At the coder, we assume each sj[n] signal is available
before the mixing process. The score transcription of each
isolated si[n] is computed using a multiple-F}y estimator al-
gorithm based on [9]. Thus, the extra information required to
recover each isolated score from the mixture is coded using
the algorithm scheme of Fig. 3 and Fig. 4. The resulting bi-
nary code is inaudibly embedded into the mixture signal using
the watermarking technique described in [10].

"Music Information Retrieval eXchange homepage: http://www.
music-ir.org/mirex/wiki/2011:MIREX2011_Results
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At the decoder, the signals si[n] are unknown. The extra
information extracted from the mixture is used to correct er-
rors and to separate the music transcription resulting from the
multiple- Fy estimation algorithm applied on the watermarked
mixture 2"V [n]. Finally, a score-informed source separation
method [5] is used to estimate the separated source signals
5% [n] from 2V [n].

3.2. Informed Score Estimation

According to equation (2), each source signal sj[n] corre-
sponds to a set of active notes which are related to a fun-
damental frequency. In our method, each note is coded as a
MIDI pitch using equation (3). The pitch resolution allows to
represent each note with 7 bits of information (using a binary
code) and is sufficient enough for the score-informed separa-
tion algorithm applied at the decoder.

As discussed in section 2, a multiple- Fjy estimator can ap-
proximate the set of all active notes played in a mixture but
cannot separate the corresponding score of each isolated in-
strument without prior information.

Thus, the proposed coder/decoder configuration has two
goals. First, it aims to recover the reference set of all instan-
taneous active notes (for all the instruments) present in the
mixture. Second, it aims to affect each note to each corre-
sponding instrument as required by the separation process.
The corresponding extra information required to assist a clas-
sic multiple-Fy estimator is computed at the coder using the
algorithm illustrated in Fig. 3 and Fig. 4.

Let us use the following notations for the proposed
method description. Hg’) denotes the instantaneous set of

all active notes for the source k and |H§:)| € [0, Lg] is the
cardinality of this set. This corresponds to the number of
simultaneously active notes for the source & located at instant
t. QW
notes (where each element is unique) and Q) is the set of
estimated notes resulting from a classic multiple- £y estima-
tion applied on the mixture x[n]. According to Fig. 1, the

= Uszl HS) denotes the overall set of all active

reference Hg) is estimated at the coder by the multiple-Fj
estimator applied on each separated signal sy [n].

3.2.1. Coder

The proposed algorithm computes a binary code Z() from
the generated insertion/suppression or prediction operations
which must be applied to recover Q) from Q®). This cor-
responds to the common errors committed by existing mu-
sic transcription systems and which are used as an evaluation
metric in [11]. During the algorithm procedure, Q) is com-
puted and corresponds to the set of active notes which can be
computed using Z(*). Thus, the coding process is terminated
when Q) = Q®) At a first step, Q) is compared to Q(t—1)
and 1 bit is used to inform if the decoder has to consider the

prediction: Q) «— Q=1 1In this particular case, all the ac-
tive notes are sustained and (%) is ignored. Otherwise, each
insertion and each suppression operation required to compute
QO from Q=Y is marked as accepted or rejected using 1
bit. Fig. 3 and Fig. 4 uses the following code convention: 1 is
used for accepted and 0 otherwise. Thus each bit is concate-
nated to Z(). When all transformation operations are treated
to obtain Q1) it is compared with Q). If Q) £ Q) all the
missing insertion and suppression transformation operations
are directly coded into Z() using 7 bits per Fy) candidate. One
can deduct this coding step increases heavily the size Z(*) and
can be avoided with a more accurate estimator.
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Fig. 3. Algorithm scheme used to compute Z(*) which is re-
quired to obtain Q) from Q®). P" and PP denote respec-
tively the set of note candidates which have to be inserted or
suppressed.

The set of active notes per source flgf) is coded with a sim-
ilar strategy. One bit is necessary to inform the decoder to use
the prediction for the considered source, fIE:) — f[,(f*l). Oth-
erwise, insertion and suppression operations are coded and
applied to obtain ﬁ;ct). Finally, Z(*) is inaudibly embedded
into the mixture signal using the desired watermarking tech-
nique.

3.2.2. Decoder

At the decoder, where the source signals s[n] are unknown,
M is exactly recovered from z" [n] by the watermark ex-
traction. The algorithm starts with Q) = 1) = ¢, Q®
is computed from 2"V [n] using the same multiple-Fy, estima-
tor. The insertion and suppression transformation operations
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Fig. 4. Algorithm scheme used to compute Z(*) which is re-
quired to obtain 1:[,(:) from Q).

are computed and corrected using Z(*) and the inverse of the
coding procedure is applied. The corrected transformation
operations ensure to verify Q) = Q) and l:I,(;’) = H,(;’) at
the end of the decoding process.

Due to signal differences between [n] and =V [n], Q)
may differ from the one computed at the coder, however the
prediction mechanism integrated in this coding strategy in-
crease the robustness of the method. This ensure the estima-
tor is only used to introduce new note candidates at each onset
or offset event. Thus all estimation errors do not have to be
systematically coded and corrected during sustain periods.

3.3. Watermarking

The extra information Z(*) is inaudibly embedded using the
technique presented in [10]. This method inspired from
Quantization Index Modulation (QIM) [12] is based on the
Modified Discrete Cosine Transform (MDCT) coefficients
quantization. We chose this method for its high perceptual
quality and capacity. Furthermore, this watermarking tech-
nique is frame-based and can theoretically allow real-time
decoding for real-time applications. However this feature
was not exploited during our experiments due to the low
amount of embedded extra information. Unfortunately, this
technique is not robust to lossy compression thus it limits the
field of application to lossless formats (e.g. FLAC, WAVE).

3.4. Score-Informed Source Separation

After the decoding process where the score of each separated
signal is estimated and quantized on the MIDI pitch scale,
source signals are separated using [5]. This method based
on Non-negative Matrix Factorization (NMF) approximates

the magnitude spectrogram of the mixture denoted X of size
F' x T by a product between two positive matrices as:

X~X=WH 4)

where W € RF*E and H € REXT (FR + RT <« FT) cor-
respond respectively to the constrained dictionary and time
activations. This method uses a dictionary composed of har-
monic time-dependent parametric atoms and uses ITj(t) as a
prior to constrain the matrix H of time activation for each
source signal. This method was shown to obtain good re-
sults comparable to Probabilistic Latent Component Analysis
(PLCA) based algorithms [4].

4. EVALUATION

For these experiments, we use two musical pieces of 6 sec-
onds sampled at 44.1kHz. The first piece is composed of 3
instruments: flute, piano, and contrabass. The second one is
composed of 4 instruments: Hammond organ, piano, contra-
bass, and drum. All instruments except the drum were tran-
scribed at the coder using our implementation of [9]. During
experiments, we used time frames of 185ms (FFT length of
8192 samples) with an 75% overlap. The transcription re-
turned by this estimator were post-processed with a recon-
struction algorithm which suppresses the Fiy candidates with
a duration lower than 4 frames and reconnects the Fj trajec-
tory. The same algorithm with the exact identical parameters
is applied on the mixture during the decoder process. For the
separation applied at the decoder, the magnitude spectrogram
was computed with time frames of 46ms (FFT length of 2048
samples) and results were obtained after 5 iterations (see [5]
for the update rules details of the NMF).

4.1. Informed Multiple-Fy Estimation

Table 1 shows the overall amount of bits used to assist the
score estimation at the decoder. The classic multiple-Fy es-
timator combined with our coding algorithm achieves to re-
duce the amount of the extra information required to obtain
the exact reference transcription. The resulting code com-
puted without estimator QO = ) requires a lower amount
of bits than the reference MIDI file.

Piece 1 Piece 2
Proposed (with estimator) | 2415 bits | 2353 bits
Proposed (no estimator) | 2582 bits | 2542 bits
MIDI file 5424 bits | 6120 bits

Table 1. Amount of transmitted information used at the
decoder for informed transcription and applied to score-
informed source separation.
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4.2. Quality Evaluation of Source Separation

Table 2 and 3 show objective quality measures computed be-
tween the original and the estimated sources signals using
BSS_Eval toolbox [13]. Thus, the performance is assessed
with signal to distortion ratio (SDR), signal to interference
ratio (SIR) and signal to artifact ratio (SAR) all defined in
[13]. The informal listening tests show an acceptable listen-
ing? quality with perceptible artifacts. Our experiments show
a negligible effect of the watermarking process on separation
performance due to a low bitrate requirement (about 0.4kbps).
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