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ABSTRACT

The recent development of low-cost and fast time-of-flight
cameras enabled measuring depth information at video frame
rates. Although these cameras provide invaluable informa-
tion for many 3D applications, their imaging capabilities are
very limited both in terms of resolution and noise level. In
this paper, we present a novel method for obtaining a high
resolution depth map from a pair of a low resolution depth
map and a corresponding high resolution color image. The
proposed method exploits the correlation between the objects
present in the color and depth map images via joint segmenta-
tion, which is then used to increase the resolution and remove
noise via estimating conditional modes. Regions with incon-
sistent color and depth information are detected and corrected
with our algorithm for increased robustness. Experimental re-
sults in terms of image quality and running times demonstrate
the high performance of the method.

Index Terms— Time-of-flight cameras, depth enhance-
ment, color segmentation, multisensor image fusion

1. INTRODUCTION

Obtaining accurate high resolution (HR) depth maps is cru-
cial in a number of applications, including image based ren-
dering, 3DTV, automotive applications, human-machine in-
terfaces and gaming, robotics, among many others. Con-
ventional methods to acquire depth information such as laser
range scanners [|] or stereo vision algorithms [2, 3] either
require static scenes or require long computation times pre-
venting their use in real time applications.

An important recent development in depth map acquisi-
tion is the emerging low-cost and fast cameras for measuring
depth [4]. With the development of these cameras, depth in-
formation can be captured at high speeds and can be incor-
porated in many applications due to their mobility. Unfortu-
nately, their imaging capabilities are very limited compared to
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conventional color sensors: The acquired depth maps are low-
resolution with a high noise level. For instance, the current
ToF sensor ‘Mesa Imaging SR4000° [5] offers a 176 x 144
depth map up to 50 frames per second (fps) and the struc-
tured light sensors included in the Microsoft Kinect [6] and
Asus Xtion PRO LIVE [7] offer 640 x 480 at 30 fps captured
simultaneously with a 1280 x 1024 RGB color image.

A number of post-processing methods have been devel-
oped to overcome these limitations. In [8] the authors pro-
posed an extension of the bilateral filter, named Joint Bilat-
eral Upsampling (JBU), to upsample the LR depth map with
the guidance of the HR color image. The JBU filter operates
simultaneously on the high and low resolution images. How-
ever, using the color image as a guide may in some regions
lead to blurry edges and texture transfer from the color im-
age to the depth map. NAFDU (Noise Aware Filter for Depth
Upsampling) [9] tries to overcome these undesirable effects
with a noise-aware filter which combines the original JBU fil-
ter with a filter designed to prevent artifacts in regions where
JBU is likely to produce poor results. Joint Global Mode Fil-
tering (JGMF) is proposed in [ 1] based on the joint histogram
of color and depth images. It is shown that the solution is
optimal with respect to /;-norm minimization, and it can also
be used to enforce temporal consistency for video depth en-
hancement. A Markov random field (MRF)-based approach
is proposed in [10], where a HR depth map is obtained by
finding the mode of the posterior distribution defined by the
MRE. MRFs are also used in [ | 1], reformulating both the data
fidelity and smoothness terms and using loopy belief propa-
gation to minimize the energy function. Although the image
quality is high, the method requires manual tuning of a num-
ber of parameters.

In this paper, we propose a new method to obtain an en-
hanced HR depth map from a pair of a LR noisy depth map
and a HR color image of the same scene. By applying joint
segmentation on the color and depth images into regions of
homogeneous characteristics (color and depth), we estimate
the pixels in the HR depth image by the conditional modes
within these regions. This leads to very effective denois-



ing while preserving object boundaries. Regions where the
color information is inconsistent with the information from
the depth map are detected and corrected. In addition, the
method mitigates the undesirable effects caused by texture
transfer and blurred edges.

The rest of the paper is organized as follows. In Sec. 2
we describe in detail the proposed algorithm. In Section 3
we compare our algorithm with other state-of-the-art meth-
ods and assess its quality and, finally, section 4 concludes the

paper.

2. PROPOSED ALGORITHM

Let us denote by Y the HR color image and by X7y, the low-
resolution depth map upsampled to the size of Y and aligned
to it. Our goal is to obtain an enhanced depth map, X, by
applying a spatially varying denoising filter on Xy, which is
designed via jointly segmenting the color image Y and the
upsampled depth map Xi,.

The proposed algorithm is summarized as follows. Both
input images are divided into overlapping patches that will be
processed independently in two stages. First, a joint segmen-
tation is performed on the color and depth patches, denoted
by Y? and X7 and a single depth value is assigned to each
region of Y?. In the second stage, a refinement is applied to
regions that contain multiple objects with similar colors but at
different depth. These regions are detected and divided into
subregions with different depth. Once all the patches are pro-
cessed, they are merged together to form the final HR depth
map.

Each step of the proposed algorithm, summarized in
Alg. 1, will be described in the following sections.

2.1. Preprocessing

Our algorithm starts from an initial HR depth map Xy, ob-
tained by bicubic interpolating the LR depth map to the size of
Y. We assume that, in small regions, the number of different
objects or textures will be small so we will divide Y and X,
into small overlapped square patches of size B, x B, denoted
respectively by Y? and X?, and process them independently.
Using overlapping patches will allow us to adapt to smoothly
varying depths without creating false contours or blocking ar-
tifacts and, also, will allow to process each block in parallel
with a considerable improvement in running time. Given an
image of size N, x N, that will be divided in p; x p, patches
with an overlapping factor of overlap, 0 < overlap < 1, the
size of each block can be computed as

N,
B, = z
{(1 — overlap)p, + overlap

J,ze {z,y}.

The size of the block is relatively important to the algorithm.
If the size of the block is too big, texture transfer from the
color image to the depth image might occur. On the other
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Algorithm 1: Proposed Algorithm

Input: HR color image Y, and upsampled depth map Xj..
K71 = 8: number of classes in each color image patch.

K> = 3: number of classes in each depth patch.

o2,,: depth refinement threshold.

Output: X: HR depth map

// Preprocessing
X = Gaussian filtering of X7,
Divide images in overlapping patches.
// Main Algorithm
for each patch p do
C~%, = segmentation of Y? into K classes, representing each
class by its centroid.
C’;(G = segmentation of X7, into K classes, representing
each class by its centroid.
// Joint-Segmentation
for each region r in C%, do
‘ X? (i) = modeier (C , (1)), Vi € r.
end
// Depth refinement
for each region r in X? do
if variance;er (X% (i)) > o7, then
XP(i) = segmentation of {X% (5),j € r}into K>
classes, representing each class by its centroid, Vi € r.
end
end

end
Postprocessing: Blend the obtained patches to form the final HR
depth map X.

hand, if the block size is too small the obtained depth map
will be noisy and not accurate. In our experiments we found
that a block size around 20 x 20 pixels for an image size of
420 x 378 gives very good results. Examples of a block of
the color image and the upsampled depth map are shown in
Fig. 1a and 1b, respectively. The real unknown HR depth map
patch, from Moebius dataset available in the Middlebury web
site [3], is shown in Fig. 1h for reference.

Since the input depth map is quite noisy, before decom-
posing it into patches, we apply a Gaussian low pass filter on
it to obtain a smoothed depth map, X . The variance of the
filter is obtained by searching for a flat area in the luminance
of the color image, that is expected to conform a single object,
and computing the variance in the corresponding area of the
depth map. Taking advantage of the patch decomposition, we
select, as flat area, the patch of the color image with the lowest
variance. Fig. 1c shows the upsampled block in Fig. 1b after
filtering. Note that the objective of this step is not to obtain
a high quality depth map but to prevent noise from adversely
affecting the segmentation process, which is described next.
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Fig. 1. (a) HR color image patch. (b) LR noisy depth map
patch upsampled by bicubic interpolation. (c) Gaussian low
pass filtered version of the patch in (b). (d) Depth map patch
segmentation. (e) Color image patch segmentation. (f) HR
depth map patch after initial classification. (g) HR depth map
patch after refinement. (h) Ground truth depth map.

2.2. Joint segmentation

Each patch in Y and X is then processed to obtain areas
with a homogeneous color that, usually, correspond to differ-
ent objects. In most cases, each of those areas will be a part
of an object. Areas of homogeneous color which are not part
of only one object will be detected later. It is well known
that there is not a direct correspondence between color and
depth, that is, objects with the same color may be at different
distances. However, in vast majority of the cases, regions of
the same color correspond to the same object. Therefore the
information on shape of the region from the color image can
be used to accurately form the same region in the depth map
with crisp edges and smooth values inside each region.

In order to obtain the areas with homogeneous color, we
apply the standard k-means [ | 2] clustering technique with the
Euclidean distance metric to YP, obtaining the segmentation
of the patch C%,. We use the HSV color space since we found
that it provides better results than RGB, YCbCr and CIELab,
especially in the object boundaries. An example of the seg-
mentation of the color image patch in Fig. 1a is displayed in
Fig le. The algorithm is not very sensitive to the number of
classes if it is large enough to capture the different colors that
include objects and textures. It is important to note that the
k-means clustering algorithm will deliver empty clusters so
that the final number of clusters may be smaller than selected.
Experimentally we found that K7 = 8 classes is appropriate.

We also apply the k-means algorithm to cluster the
smoothed depth map patch, X7, into at most K> = 3 depth
classes. Since we are working on small patches, we assume
that the number of objects within a patch at different depths
is small. After the segmentation, each pixel in X7 is assigned
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the value of the centroid of its corresponding class, obtaining
a depth patches C’)’(G with reduced noise. However, the bor-
ders of the objects may not be precise and they may present
artifacts due to the noise and the blur introduced by the up-
sampling and filtering performed in the preprocessing stage
as can be seen in Fig 1d.

To obtain a high resolution depth map with detailed edges,
we make use of C%,. For each segment r in C%,, the most
frequent depth value of the segment in C’)’(G is calculated and
assigned to the set of pixels r in XP, that is,

XP(i) = mode;er(Cxk , (1)), Vi € 1.

This process has two important properties. First, it is essen-
tially a spatially-selective denoising filter, where the value of
each pixel is estimated using its spatial neighborhood in both
color and depth images. Second, it effectively merges small
regions created during the segmentation of the color image
due to textures or differences of color in the same objects.
The merging occurs due to the similar depth values at these
segments.

The resulting HR depth map patch, XP, will be accurate
in most of the regions of the image. However, regions with
homogeneous colors but different depths may be classified as
a single depth region. An example is shown in the central part
of Fig. 1f. In this case, the information of the color image
does not help in the segmentation of the depth image and thus
another step is necessary to detect and process these regions.

2.3. Depth map refinement

In order to check if each one of the above found regions r in
XP corresponds to a single depth, we calculate the variance of
the pixels in r in the upsampled depth map X7 . Regions with
objects at different distances are expected to have a higher
variance. Thus, if the variance within a region is greater than
a given threshold o2,,, we further segment it in different re-
gions, each one corresponding to a different depth. Note that,
in this case, color image does not provide any information
since the object color in the region will be very similar.

To further segment these regions, we apply a k-means
clustering on the three dimensional space composed of the
depth value obtained from X¥ and the horizontal and vertical
coordinates of the pixels in the region r. To avoid problems
with the different ranges, the depth values are normalized to
the interval [0, 1] and the spatial coordinates «, y are normal-

ized as (x—ming,)/+/((maz, — ming)? + (max, — min,)?)
and (y —miny)/+/((maz, — ming)? + (maz, — min,)?),
where max,, ming, max, and min, refer to the corre-
sponding coordinates of the bounding box of the region. The
intuition behind this clustering is to create clusters that have
similar values but they are also spatially close to each other.
This process creates compact regions, each one correspond-
ing to one of the depth values present in the region. An




example of the result of this process, applied to the patch
depicted in Fig. 1f, is shown in Fig. 1g.

2.4. Postprocessing

After all image patches are processed, we merge the HR depth
map patches XP? using a normalized windowing function w?
as

»
X =) wPX?,
p=1

where P = p, xp, is the number of patches and 25 wP(j) =
1,forl < j < (N, x Ny). We evaluated Gaussian, rectan-
gular, triangular, and Hann windowing functions and empir-
ically found that Hann windowing produces the best results
without noticeable blocking artifacts and smooth depth values
within the objects. This is particularly important to prevent
the staircase effect that may appear if an object is not parallel
to the image plane.

3. EXPERIMENTS

We evaluated the performance of the developed algorithm
on the HR depth map and color image pairs from the Mid-
dlebury stereo database [2, 3]. Results are reported on the
Teddy and Cones images, shown in Fig. 2, supplementary
material can be found at http://decsai.ugr.es/pi/

computationalphotography/depth_upsampling/.

The LR depth maps, depicted in Fig. 3(a), are simulated by
downsampling the ground truth depth map, using bicubic
interpolation, by a factor of 4 in each direction and adding
white Gaussian noise to obtain a signal-to-noise ratio (SNR)
of 20 dB.

In all experiments, the number of patches was fixed to 26
and 34 in the vertical and horizontal directions, respectively,
with an overlap percentage of 50%. We used eight classes
for the color image segmentation and three for the depth map
segmentation both in the initial segmentation and in the re-
finement stage. The variance threshold o2, used to classify
a region as homogeneous, is set to 100 in all experiments. We
found that the algorithm is not sensitive to the value of this
parameter and that selecting a threshold higher than the noise
variance estimation is sufficient.

We compare the proposed algorithm with the state-of-the-
art algorithms named JBU [8], NAFDU [9] and MRF [10].
All experiments are performed using non-optimized MAT-
LAB implementations of the methods running on a Core 2
Duo laptop without parallel execution using GPUs. The re-
sulting HR depth maps, depicted in Fig. 3(b) to 3(f), show
that the proposed method removes the noise better than the
competing methods and produces fewer artifacts around the
object edges. In addition, it does not cause texture transfer
between color and depth images. Quantitative evaluation of
the results in terms of PSNR and SSIM are shown in Table 1.
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Fig. 2. (a) Original color images. (b) Ground truth depth
maps.

Table 1. Numerical comparison of the different methods.

Teddy
Method Time | Errors | PSNR | SSIM
JBU [8] 81.8 0.594 34.63 | 0.904
NAFDU [9] 115 0.580 3474 | 0915
MRF [10] 40.4 0.566 34.09 | 0913
Proposed 38.4 0.423 35.56 | 0.954
Cones
Method Time | Errors | PSNR | SSIM
JBU [8] 83.3 0.709 3548 | 0.845
NAFDU [9] | 114.5 | 0.692 3591 0.874
MREF [10] 40.7 0.681 35.26 | 0.885
Proposed 38.1 0.542 36.94 | 0.940

We also show the percentage of bad pixels (pixels with an ab-
solute error in depth greater than 1), denoted by “Errors” in
Table 1. Results show that the proposed method outperforms
the competing methods by providing much fewer bad pixels
and a higher SSIM, especially for the Cones image. Table 1
also shows the running times in seconds for each method. Our
method is much faster than JBU and NAFDU and is compa-
rable to MRF. The proposed method can also easily make use
of parallel architectures to reduce the running times.

4. CONCLUSION AND FUTURE WORK

In this paper, we proposed a method to efficiently combine
high resolution color images and low resolution depth maps
to obtain HR depth maps with suppressed noise and upsam-
pling artifacts. The proposed method provides high quality
depth maps and compares favorably to other state-of-the-art
methods both in terms of image quality and running speed.


http://decsai.ugr.es/pi/computationalphotography/depth_upsampling/
http://decsai.ugr.es/pi/computationalphotography/depth_upsampling/

Future work will focus on developing a GPU implementation
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Fig. 3. (a) LR depth maps, upsampled by pixel replication.
(b) Results with JBU [8]. (c) Results with NAFDU [9].
(d) Results with MRF [10]. (e) Results with the proposed
algorithm.
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of the method for real video processing.
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