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ABSTRACT

Spectral analysis with nonuniform frequency resolution

of nonstationary stochastic processes is addressed. The

frequency-warping operation aimed at increasing the fre-

quency resolution is shown to modify the nonstationarity

kind of the analyzed process. Specifically, in several cases of

interest, the frequency-warped process is shown to belong to

the recently introduced class of the spectrally correlated pro-

cesses. Spectral correlation density estimation is performed

by frequency smoothing the periodogram along curves in the

bifrequency plane instead of lines with unit slopes as in the

case of wide-sense stationary and almost-cyclostationary pro-

cesses. Application to cyclic spectral analysis of the GPS-L1

signal is considered.

Index Terms— Spectrally correlated processes, cyclosta-

tionarity, spectral analysis.

1. INTRODUCTION

Spectral analysis with nonuniform (or unequal) frequency

resolution finds applications in several fields such as fre-

quency and spectral estimation. This problem has been in-

vestigated with reference to deterministic signals in [2], [11],

[16]. The nonuniform frequency resolution is obtained by

frequency-warping techniques. For this purpose, in [2] and

[11] the warped discrete Fourier transform is introduced.

In this paper, the problem of spectral analysis with

nonuniform frequency resolution is addressed for some

classes of discrete-time stochastic processes. Spectral analy-

sis with nonuniform frequency resolution of a given process

is equivalent to spectral analysis with uniform frequency

resolution of a frequency-warped version of the original

process. Since frequency-warping is a linear time-variant

transformation, spectral analysis techniques for deterministic

signals cannot be easily extended to the case of nonstationary

processes. In fact, frequency warping modifies the the non-

stationarity properties of the original stochastic process under

analysis.

In the paper it is shown that in the case of a wide-sense

stationary (WSS) process, the frequency-warped process is

still WSS, but jointly spectrally correlated (SC) with the

original process. In addition, it is shown that for an almost-

cyclostationary (ACS) process, after frequency warping, the

resulting process is spectrally correlated (SC) and jointly

SC with the original process. SC processes are a recently

introduced class of nonstationary processes that have Loève

bifrequency spectrum with spectral masses concentrated on a

countable set of support curves in the bifrequency plane [12],

[13], [14, Chap. 4]. ACS processes are obtained as special

case of SC processes when the support curves are lines with

unit slope in the principal frequency domain.

In the paper, the periodogram frequency smoothed along

curves in the bifrequency plane rather than along lines with

unit slope is proposed as effective method for spectral anal-

ysis of SC processes obtained by frequency-warping WSS

and ACS processes. Performance analysis is carried out via

Monte Carlo simulations for a GPS-L1 signal.

The paper is organized as follows. In Section 2, discrete-

time SC processes are briefly reviewed. In Section 3 the

problem of spectral analysis of nonstationary processes with

nonuniform frequency resolution is theoretically addressed.

Numerical results are presented in Section 4. Conclusions are

drawn in Section 5.

2. SPECTRALLY CORRELATED PROCESSES

The complex-valued discrete-time processes x1(n) and x2(n)
are said to be second-order jointly harmonizable if their cross-

correlation function can be expressed by the Fourier-Stieltjes

integral

E
{
x1(n1) x

(∗)
2 (n2)

}
=

∫

I2

ej2π[ν1n1+(−)ν2n2] dγxxx(ν1, ν2)

(1)

where I , [−1/2, 1/2] and γxxx(ν1, ν2) is a (spectral) cor-

relation function of bounded variation [10] . In (1), super-

script (∗) denotes optional complex conjugation, (−) is an op-

tional minus sign which is linked to (∗), and subscript xxx =

[x1, x
(∗)
2 ].

For complex-valued processes, both cross-correlation

function E {x1(n1) x
∗
2(n2)} and conjugate cross-correlation
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function E {x1(n1) x2(n2)} must be considered for a com-

plete second-order characterization [17]. Notation in (1)

allows to treat both second-order cross-moments by consid-

ering or not the optional complex conjugation.

Let Xi(ν) be the Fourier transform of the process xi(n),
(i = 1, 2), assumed to exist (at least) in the sense of distribu-

tions [4], [5]. It results dχi(ν) = Xi(ν) dν, where χi(ν) is

the integrated spectrum of xi(n), provided that χi(ν) does not

contain singular components [6] and derivatives are intended

in a generalized sense that accommodates Dirac deltas in cor-

respondence of jumps in χi(ν). The Loève bifrequency cross-

spectrum of two discrete-time complex-valued second-order

jointly harmonizable stochastic processes x1(n) and x2(n) is

defined as [10]

Sxxx(ν1, ν2) , E
{
X1(ν1)X

(∗)
2 (ν2)

}
. (2)

If γxxx(ν1, ν2) and the integrated spectra χi(n) do not contain

singular components, dγxxx(ν1, ν2) = E{ dχ1(ν1) dχ∗
2(ν2)}

= Sxxx(ν1, ν2) dν1 dν2.

Two processes x1(n) and x2(n) not containing any

additive finite-strength sinewave component are said to be

jointly spectrally correlated if their Loève bifrequency cross-

spectrum can be expressed as [13], [14, Chap. 4]

Sxxx(ν1, ν2) =
∑

k∈I

S(k)
xxx (ν1) δ̃

(
ν2 −Ψ(k)

xxx (ν1)
)
. (3)

In (3), I is a countable set and δ̃(ν) ,
∑

p∈Z
δ(ν − p) is the

periodic Dirac delta train with period 1. The complex valued

functions S
(k)
xxx (ν), referred to as spectral cross-correlation

densities, and the real-valued functions Ψ
(k)
xxx (ν) referred to

as spectral support functions, are periodic functions of ν with

period 1. Each Ψ
(k)
xxx (·) is assumed to be differentiable and

locally invertible in every interval of width 1.

From (3) it follows that discrete-time jointly SC processes

have spectral masses concentrated on the countable set of sup-

port curves ν2 = Ψ
(k)
xxx (ν1) mod 1, k ∈ I, where mod 1 is

the modulo 1 operation with values in [−1/2, 1/2). More-

over, the spectral mass distribution is periodic with period 1

in both frequency variables ν1 and ν2. Without lack of gen-

erality, it can be assumed that two support curves intersect at

most in a finite or countable set of points (ν1, ν2).

The density of Loève bifrequency cross-spectrum is ob-

tained by replacing in (3) the periodic Dirac delta train

with the periodic Kronecker delta train and is denoted by

Sxxx(ν1, ν2)

Almost all modulated signals encountered in communica-

tions, radar, sonar, and telemetry can be modeled as almost-

cyclostationary. That is, their statistical functions such as

distribution functions, moments, and cumulants are almost-

periodic functions of time [3]. Second-order jointly ACS sig-

nals in the wide-sense are characterized by an almost-periodic

(conjugate) cross-correlation function

E
{
x1(n+m) x

(∗)
2 (n)

}
=

∑

α∈A

Rα
xxx (m) ej2παn (4)

where the Fourier coefficients

Rα
xxx (m) ,

〈
E
{
x1(n+m) x

(∗)
2 (n)

}
e−j2παn

〉

n
(5)

with 〈·〉n denoting infinite-time average, are referred to as

cyclic cross-correlation functions and

A , {α ∈ [−1/2, 1/2) : Rα
xxx (m) 6≡ 0} (6)

is the countable set of cycle frequenciesα in the principal do-

main [−1/2, 1/2). By double Fourier transforming both sides

of (4), the following expression for the Loève bifrequency

cross-spectrum is obtained

Sxxx(ν1, ν2) =
∑

α∈A

Sα
xxx (ν1) δ̃(ν2 − (−)(α− ν1)) (7)

where Sα
xxx (ν) are the Fourier transforms of Rα

xxx (m) and are

referred to as cyclic spectra. From (7) it follows that discrete-

time jointly ACS processes are obtained as a special case of

jointly SC processes when the spectral support curves are

lines with unit slope in the principal frequency domain I2.

In such a case, correlation exists only between spectral com-

ponents that are separated by quantities equal to the cycle fre-

quencies. WSS processes have distinct spectral components

that are uncorrelated and the support of the Loève bifrequency

spectrum in I2 is contained in the main diagonal.

The case of support lines with not necessarily unit slope

is addressed in [8]. Continuous-time fractional Brownian

motion is shown to have spectral masses concentrated on

the main diagonal and the frequency axes of the bifrequency

plane [15].

3. SPECTRAL ANALYSIS WITH NONUNIFORM

FREQUENCY RESOLUTION

(Cross-)spectral analysis techniques of a discrete-time pro-

cess x(n) based on the Fourier transformX(ν) and its inverse

x(n) =

∫ 1/2

−1/2

X(ν) ej2πνn dν (8)

have uniform frequency resolution. That is, the discrete

Fourier transform (DFT) X(k/N), k = −N/2, . . . , N/2− 1
(N even) has frequency bins uniformly spaced in the main

frequency interval [−1/2, 1/2] with spacing 1/N .

Let ψ(ν) a real-valued strictly-increasing differentiable

possibly nonlinear function defined in [−1/2, 1/2] and with

values contained in [−1/2, 1/2]. The process

y(n) =

∫ 1/2

−1/2

X(ψ(ν)) ej2πνn dν (9)
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is a frequency-warped version of x(n). Due to the nonlinear

behavior of ψ(·), X(ψ(k/N)) is a DFT of x(n) with nonuni-

form (or unequal) frequency resolution [2], [11], [16]. There-

fore, spectral analysis with uniform frequency resolution of

a frequency-warped version of x(n) is equivalent to spectral

analysis with nonuniform frequency resolution of x(n).
Relationship (9) describes a linear time-variant (LTV)

transformation of x(n) into its frequency-warped version

y(n). The corresponding LTV system belongs to the class

of the deterministic linear systems in the fraction-of-time

probability framework [14, Chap. 6]. In fact, it transforms an

almost-periodic input signal into an almost-periodic output

signal with different frequencies of the (generalized) Fourier

series expansion. Since the system is LTV, it modifies the

nonstationarity properties of the input process.

In the following, input ACS and WSS processes are con-

sidered. It is shown that in both cases the statistical charac-

terization of the output process an the joint characterization

of the input and output processes involves (jointly) SC pro-

cesses.

Let x(n) be an ACS process with Loève bifrequency spec-

trum (7) with x1 ≡ x2 ≡ x and let us denote by ψ̃(ν) the

periodic replication with period 1 of the frequency-warping

function ψ(ν), that is, ψ̃(ν) ,
∑

m∈Z
ψ(ν − m). From (9)

and (7), and using the variable change property in the argu-

ment of Dirac deltas we have

E
{
Y (ν1) Y

∗(ν2)
}
= E

{
X
(
ψ̃(ν1)

)
X∗

(
ψ̃(ν2)

)}

=
∑

α∈A

Sα
xxx

(
ψ̃(ν1)

)
δ̃
(
ψ̃(ν2)− ψ̃(ν1) + α

)

=
∑

α∈A

Sα
xxx

(
ψ̃(ν1)

) ∣∣∣φ̃′(ψ̃(ν1)− α)
∣∣∣

δ̃
(
ν2 − φ̃(ψ̃(ν1)− α)

)
(10)

where φ̃(·) is the periodic replication with period 1 of φ(·),
the inverse function of ψ(·). From (10) it follows that the

Loève bifrequency spectrum of y(n) has spectral masses con-

centrated on a countable set of support curves in the bifre-

quency plane. Specifically, y(n) is a SC process characterized

by spectral correlation densities and support curves

S(k)
yyy (ν1) = Sα

xxx

(
ψ̃(ν1)

) ∣∣∣φ̃′(ψ̃(ν1)− α)
∣∣∣ (11)

Ψ(k)
yyy (ν1) = φ̃(ψ̃(ν1)− α) (12)

respectively, where k is an integer index in one-to-one corre-

spondence with the cycle frequencies α in the countable set

A. In addition, the Loève bifrequency cross-spectrum of y(n)
and x(n) is given by

E
{
Y (ν1)X

∗(ν2)
}
= E

{
X
(
ψ̃(ν1)

)
X∗(ν2)

}

=
∑

α∈A

Sα
xxx

(
ψ̃(ν1)

)
δ̃
(
ν2 − ψ̃(ν1) + α

)
(13)

that is, y(n) and x(n) are jointly SC processes.

In the special case where x(n) is WSS, the set A contains

the only element α = 0. Thus,

E
{
Y (ν1) Y

∗(ν2)
}
= S0

xxx

(
ψ̃(ν1)

) ∣∣∣φ̃′(ψ̃(ν1))
∣∣∣ δ̃(ν2 − ν1)

(14)

that is, y(n) is in turn WSS accordingly with the results of

[9]. However, x(n) and y(n) are jointly SC with Loève bifre-

quency cross-spectrum

E
{
Y (ν1)X

∗(ν2)
}
= S0

xxx

(
ψ̃(ν1)

)
δ̃
(
ν2 − ψ̃(ν1)

)
. (15)

An illustrative example is presented to show the effects

of spectral analysis with nonuniform frequency resolution on

an ACS process. A discrete-time pulse-amplitude modulated

(PAM) signal x(n) is obtained by uniformly sampling with

period Ts a continuous-time PAM signal with raised cosine

pulse with excess bandwith η = 0.85 and symbol period

Tp = 4Ts. It is a discrete-time ACS process with three cy-

cle frequencies α ∈ {0,±Ts/Tp}. Its frequency-warped ver-

sion y(n) is also considered, with frequency warping func-

tion ψ(ν) = Bm tan−1(ν/Bs) which is typical in spectral

analysis with non uniform frequency resolution [16]. In the

example,Bm = Bs = 0.2.

In Figure 1, the magnitude of the bifrequency spectral cor-

relation density for (a) x(n) and (b) y(n) is reported as func-

tion of ν1 and ν2. The frequency-warping operation trans-

forms the ACS process into a SC process. The support of the

power spectral density (PSD) of the process, which is con-

tained in the main diagonal, after frequency warping remains

contained in the main diagonal even if the shape of the PSD

is modified. This result is in accordance with the fact that

frequency warping transforms WSS processes into WSS pro-

cesses [1], [9].

Cyclic spectra of x(n) estimated with nonuniform fre-

quency resolution are obtained by estimating with uniform

frequency resolution the spectral correlation densities (11).

Since the support curves (12) of the SC process y(n) are not

lines with unit slope, the classical frequency-smoothed cyclic

periodogram method that is adopted for cyclic spectral anal-

ysis of (jointly) ACS processes [3] cannot be adopted in this

case.

The frequency-smoothed cyclic periodogram at cycle fre-

quency α of the ACS process x(n) is obtained by frequency

smoothing the bifrequency cross-periodogram

Ixxx(ν1, ν2) ,
1

N
XN (ν1)X

∗
N (ν2) (16)

along the support line ν2 = ν1 − α, where XN (ν) is the

short-time Fourier transform of x(n) for n = 0, 1, . . . , N−1.

Motivated by this, an estimator of the spectral correlation

density (11) is obtained by considering the bifrequency cross-

periodogram frequency smoothed along the support curve

(12). That is,

S(k)
yyy (ν1)N,∆ν = Ixxx(ν1, ν2)|ν2=Ψ

(k)
yyy (ν1)

⊗A∆ν(ν1) (17)
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(a) (b)

Fig. 1. Magnitude of the bifrequency spectral cross-correlation density of (a) x(n) and (b) y(n) as a function of ν1 and ν2.

where ⊗ denotes periodic convolution with period 1 with re-

spect to ν1 and A∆ν(ν1) is a frequency-smoothing window

with bandwidth ∆ν such that it approaches δ̃(ν), in the sense

of distributions, as ∆ν → 0. By following the guidelines

in [14, Chap. 4] where the estimator for the continuous-time

case is considered, the frequency-smoothed periodogram (17)

can be shown to be a mean-square consistent and asymp-

totically complex Normal (as N → ∞ and ∆ν → 0 with

N∆ν → ∞) estimator of S
(k)
yyy (ν1) E

(k)
(ν1), where E

(k)
(ν)

is a known multiplicative bias factor depending on A∆ν(ν)

and the first-order derivative of Ψ
(k)
yyy (ν). When the process is

ACS, Ψ
(k)
yyy (ν) = ν1 − α, and estimator (17) reduces to the

well-known frequency-smoothed cyclic periodogram [3].

4. NUMERICAL RESULTS

In this section, a numerical experiment is conducted aimed at

corroborating the theoretical results of Section 3.

Spectral analysis with nonuniform frequency resolution

is carried out for the discrete-time signal x(n) obtaining by

uniformly sampling the complex envelope of a continuous-

time GPS-L1 signal [7]

xa(t) =
√
2 P d(t) c(t) cos(2πfL1t+ φ0)

+P d(t) p(t) sin(2πfL1t+ φ0) (18)

where fL1 is the L1 carrier frequency, d(t) is the navigation

message, c(t) is the course acquisition (C/A) code, and p(t)
is the precision P(Y) code. The signal d(t) is obtained by

interleaving two periodic components with periods Tframe

(frame period) and Tpage = 5Tframe (page period), respec-

tively, and a binary PAM signal with bit period Tb such that

Tframe = 300Tb; the PAM signal is in turn multiplied by

a periodic signal with period Tpage. The signal c(t) is the

periodic replication of a fixed sequence of Nc = 1023 chips

that identifies the satellite, it is periodic with period NcTc
where Tc is the chip period such that Tb = 20NcTc. The

signal p(t) is a periodic signal with period equal to 1 week

obtained by periodic replication of a fixed pseudo-noise se-

quence, it is modeled as a binary PAM signal with bit period

Tp = Tc/10 within realistic observation intervals. All pe-

riods of periodic signals and bit periods of PAM signals are

multiple of Tp. Therefore, the complex envelope of xa(t)
is a cyclostationary process with period Tp. An accurate

cyclic spectral analysis shows that the complex envelope

of xa(t) exhibits strong cyclic features at cycle frequen-

cies α ∈ {k1/(NcTc) ± k2/Tb ± k3/Tpage, k1/(NcTc) ±
k4/Tframe±k5/Tpage, k6/Tp±k2/Tb±k3/Tpage, k6/Tp±
k4/Tframe ± k5/Tpage} where k1, . . . , k6 are small integers.

Since the base pulse of the PAM and periodic signals is

rectangular, the bandwidth of the continuous-time signal is

ideally infinite. Therefore, a sampling frequency relatively

large compared with the (approximate) bandwidth of the

complex envelope of xa(t) is necessary to contain aliasing.

Consequently, cyclic spectra of x(n) are significantly differ-

ent from zero in small bands in the main frequency interval

[−1/2, 1/2].

The frequency-smoothed cyclic periodogram of x(n) at

cycle-frequency α = 1/Tc is estimated by N = 210 samples

and ∆ν = 1/16 when Tp = 4Ts, with Ts denoting the sam-

pling period. In order to increase the frequency resolution, a

frequency-warped version of x(n), say y(n), is constructed

with frequency warping function ψ(ν) = Bm tan−1(ν/Bs)
with Bm = 0.5, Bs = 1. Thus, the frequency smoothed

periodogram (17) of y(n) with N = 210 and ∆ν = 1/16
is evaluated by frequency smoothing the bifrequency peri-

odogram (16) along the support curve ν2 = φ̃(ψ̃(ν1) − α)
with α = 1/Tc. Sample mean (solid line) and standard devi-

ation (shaded area) evaluated by 100 Monte Carlo trials are

reported in Fig. 2 for (a) the magnitude of the frequency-

smoothed cyclic periodogram of the ACS signal x(n) and (b)

the magnitude of the periodogram of the SC signal y(n) fre-

quency smoothed along the support curve. The main three

lobes of the cyclic spectrum of x(n), due to the frequency

warping, are spread over a larger bandwidth with no signifi-

cant increase of the estimate variance.
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(a) (b)

Fig. 2. (a) GPS-L1 signal x(n) with rectangular pulse. Magnitude of the frequency-smoothed cyclic periodogram at cycle frequency

α = 1/Tc as a function of ν1. (b) Frequency warped signal y(n). Magnitude of the bifrequency periodogram frequency smoothed along the

support curve ν2 = φ̃(ψ̃(ν1)− α) as a function of ν1. Solid line: Sample mean; Shaded area: standard deviation.

5. CONCLUSION

Spectral analysis with nonuniform frequency resolution is

performed by frequency warping the original process and

then using a uniform frequency resolution analysis on the

frequency-warped process. Frequency-warping operation

modifies the nonstationarity kind of the process. In par-

ticular, almost-cyclostationary processes are shown to be

transformed into spectrally correlated processes. Therefore,

spectral analysis needs to be performed by frequency smooth-

ing the periodogram along curves in the bifrequency plane

instead of lines as in the case of almost-cyclostationary and

wide-sense stationary processes. The shape of the curves de-

pends on the frequency-warping function and the signal cycle

frequencies. Performance analysis of the proposed technique

evaluated by Monte Carlo simulations for a GPS-L1 signal

shows no significant increase in the estimate variance of the

spectral correlation density of the frequency-warped process.
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