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ABSTRACT for some{x; ., } (see below). Let
In this paper we deal with the problem of spectral-line asialpf

nonuniformly samplednultivariate time series for which we intro- A A R
duce two methods: the first method named SPI§iarseiterative Y = [yl e yM} , X = : .. :
covariance baseestimation) is based on a covariance fitting frame- TK1 ... TEM
work whereas the second method named LIKHS:(ihood-based girttr o glwkt
estimation ofsparse parameters) is a maximum likelihood tech- A _ . .

: | : e N (3)
nigue. Both methods yield sparse spectral estimates agddtine i ot
not require the choice of any hyperparameters. We numérical e L. e
compare the performance of SPICE and LIKES with that of the re A e(ty) .. em(tr)
cently introduced method ofiultivariatesparseBayesiariearning E= : o :

(MSBL). ei(tn) ... em(tn)

Index Terms. Spectral analysis, multivariate data, nonuniform
sampling, covariance fitting, maximum likelihood, majatibn-  We will refer to {y,,,} as the data snapshots. By using the above

minimization, expectation maximization. matrix notation, (2) can be re-written as follows :
X
1. DATA MODEL AND PROBLEM FORMULATION Y=AX +E=[AI] [E} 2 BZ (4)
A T .
Let {y(t) = [y1(t), -~ ,yum(t)]" € CM*'} denote anV/-variate  \yhere I denotes the identity matrix of dimensiod x N, and
time tselnle_s Wlthde?ch of its components satisfying the falhg B A [b1,....bicin] = [AT]. Usually, the number of compo-
spectral-iine modet. nents{C,,} is much smaller than the grid dimensidf, so that
Crm — only a few values of z; ,,, } are non-zeroi.e., for any. there exist
Ym (tn) = l;m,me it tem(ta)  m=1....N 4y aset{m;} suchtha e, m = rim} Or, in other words, the matrix
a m=1 M X is row-sparse. Thus, we have transformed the nonlineacdete

PR

tion and estimation problem associated with (1) into a lirsparse
where{t,,}"_, denote the sampling times which can be nonuniparameter estimation problem for (4).
formly placed. For anym, {r;,, € (C}lc;’i denote the ampli- By assuming that the noise sequences in the data snapshots
tudes of theC;,, components located at the frequenci€s ,,, €  have zero means but possibly different variances, nafaaly.’_, ,
[0, Qmaz], Qmaz € R}lc:"i, respectively, ande,, (¢,)} denotes the and that they are uncorrelated with each other as well as Xith
noise in the data. Givefw,,(t,)}>"\ . _, we want to estimate, the (normalized) covariance matrix bf can be expressed as :

m=1,n=
form =1,..., M, the number of components,, and their corre- Py )
sponding amplitude$r; .., }- and frequencie$(; ,, } ;. Thus REE[YY*|/M = E[Iw]zt,fm\ ]ala?
the problem is taletect the components in the model as well as to I=1m=1 (5)
estimate their amplitudes and frequencies, see e.g. [1] [2] and [3] A +diagoy, -, on)
for motivation of this problem and some possible appligaio = BPB~*

To tackle this problem, we divide the frequency interval
[0, Q4] iNto a set of uniformly spaced values with a spacing Ofvvhere
A and form a fine gridw; } £, such that the true frequencies lie on _
(or, practically, close to) the grid i.e{Qle}f:’q:f‘Ll C {w},. - d|ag(
A typical choice. ofA is ﬁ [1] [4]. Making use of the grid, 2 diag(p1,p2, - s Prsn)
the data model in (1) can be re-written as follows : (6)

where E(-) denotes the expectation operation. The data sample

M E 2 M E 2
Z [‘wjl\jn‘]a"'v [Imj\?m]aa'la"'vaN>
m=1 m=1

Twity eiWKtl

t . . .
A ym(t1) ¢ TLm covariance matrix can be obtained as :
Ym = : = : ... : : o
Ym (tn) et WK | o, @) R=4 > y,u,, =YY"/M. @)
em(tl) m=1
+ : m=1,....M The quantities{p,} X, in R represent the powers at the frequen-
em(tn) cies{w;}/£,, respectively. Although our primary interest is in the
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estimation ofX from Y, we will also estimatg[p;}. In fact, in  Minimization overQ (for fixed p) is straightforward: the solution
the methods described in the following section we will steith  is given byQ, = PB*R 'R (see, e.g., [1], Appendix A, Result
the problem of estimatingp;} and an estimate aX will be ob-  R35 and [5], Section Ill, Page 632). It is easy to verify thalhs
tained as a byproduct of the method. We would also like totpoinstituting @, back into the cost function in (11) yields the original
out that apart from estimating the powers at different feguies, problem in (9). Hence thg’s obtained from (9) and (11) must be
we also estimate the noise variances by estimating the itjeant identical.
{pl}ﬁ}ﬁl. The minimization ovep (for a given@) can also be done ana-
In Section 2, we introduce two new methods, namely SPICHytically as follows. UsingQ = [Bl, e ,5K+N]*, the optimiza-

and LIKES, for estimating{p,} and X, briefly describe the tion problemin (11) (for fixed 3, }) can be reduced to
multivariate-SBL (MSBL) algorithm and duly refer to the pre

. . . . K+N 2  K+4N
vious relevant literature. In Section 3, we compare thestizdl min 5 1Bel” S wips. (12)
performance of SPICE, LIKES and MSBL, as well as their com- Pog=1 k
putational complexities and convergence properties, bamaef
numerical simulations.

=1

A simple calculation shows that

b3l (Leed - wk\/p—k)Q >0
2. SPICE, LIKESAND MSBL =N -
DI (L I >0 13
21. SPICE = ( e T WPk wk”ﬁk”) EAU (13)
o . . . Y sz e =Y
Given R, the {p;} in R can be estimated as the solutions to the ];1 (p% + wkpk) 2 1;1 2w || By |-

following minimization problem :
The left hand side in the above inequality is nothing but thst ¢
min HR71/2(R _ R)H2 8 functionin (12) and the equality holds only whep = [|3,||/wx.
P Thus the minimizer of (12) is

where|| - || denotes the Frobenius matrix nori; '/ denotes a Pr = ”Z—:H k=1,...,K+N. (14)
Hermittian square root aR™', andp 2 [p1,- - ,pK+N]T with
eachp, > 0. We have used this type of covariance fitting crite- ,inimization overQ andp, i.e. minimization over (for fixed p)

rion in [4] (for the spectral analysis of univariate timeieer i.e. 514 vice-versa, starting from any arbitrary initial poirititead to
M =1) and, in a related form, in [5] (for spatial spectral anaysi o global minimum of (11). Th¢i + 1)-th iteration of the so-

which is essentially equivalent to multivariate time ser@aly-  opained cyclic algorithm consists of the following steps:
sis with M > N) to derive a sparse parameter estimation tech-

Since the cost functionin (11) is convex in b@@andp, the cyclic

nique named SPICEgarseiterativecovariance basegstimation). Q! =P'B'R ()R
Here we extend SPICE to the multivariate case withe (1, V). i+1 _ 187 = 15
e : . . i =P 1 k=1, .  K+N (15)
By substituting the expression f@ in (8) and expanding the cost R(i+1) = B%i“B*
function we get the following equivalent formulation of theob- (i o '
lem: . (for initialization of (15)), as well as of the other yet-b@ derived
min tr(R*R‘lR) n i wipy, 9) algorithms, see Section 3) An estimateZf and hence oX can
p P then be obtained as follows :
wherew;, = ||bx|| and t(-) denotes the matrix trace. The mini- Z=Q)Y (Y'Y/M)"
mization problem in (9) is convex and has a uniqug glo_bgl mini X — the firstK rows of Z (16)
mum. In fact, (9) can be cast as the following semi-defini pr
gram (SDP), where@, denotes the value @@ obtained at the convergence of
(15).
N K+N )
min ap + w
oy 2%+ 2 (10) 22 LIKES
ar gy _ . - L
s.t. [g R] >0 I=1,...,N LIKES, which stands folikelihood-baseéstimation ofsparse pa-
! rameters, estimatgs by minimizing the Gaussian negative log-
where{a,} are auxiliary variables an@,,--- ,gy] = R. How- likelihood (NLL) function
ever, solviqg the SDP in (10) can be quite time consuming: for f(p) = tr(RflR) +1n|R| )
instance this SDP cannot be solved on a general purpose PC eve _ %tr(Y*Rﬂy) +1In|R)|

for relatively modest dimensions (say = 100, M = 10 and

K = 1000). To tackle this computational issue, we follow [4] to The minimization problem in (17) is non-convex. In fact, &nc

derive an iterative algorithm for the problem in (9). be shown that the two terms if\p) are convex and concave in

Consider the following augmented problem: p, respectively. In [6] we have derived a LIKES iterative altfom
based on a majorization-minimization technique that mingnthe
. * o1 K+N above cost function in the univariate case. Here, follovargim-
r;?,lc? rQPQ)+ ,El wipk (11) ilar approach to that in [6], we extend the LIKES algorithnthie
st.BQ = R. multivariate case.
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Since the second term jf(p), viz. In|R|, is a concave function to recompute the weigh{si; }, and can be summarized as follows:

in p, it can be majorized by its tangent plane at any point. fet
be an arbitrary point in the parameter space, andletenote the
corresponding covariance matrix; then :

- K+N ~ 1 " -
R <n|&+ > tr (R "bebi) (o — )
k=1

N KAN (18)
=In|R| - N+ > wipk
k=1
where
@2 = bR by (19)

It follows from (18) that :

fe) < (M= V) + (Y BY) + S a2 olo)
=1

(20)
for any vectorg andp. Note also that

f(®) = 9(p). (21)

Theinner loop:
At iterationi + 1:

Q" =PB'R i)Y

1 _ 1B g AN
" irm, ! ey

R(i+1)= BP"'B*
The outer loop:
Letting R. ({p{,}) denote theR ({px})
obtained at convergence
(or after a pre-specified number of iterations)
of the inner loop, compute

Wy = \/bj R, by,
and then go to the inner loop. The inner loop will then be
initialized with {p¢ }.
Final step :
The estimates oZ and X are obtained as

Z=Q.

X = the firstK rows of Z
WhereQC denotes the value @ obtained at convergence of
the outer loop.

(24)

2.3. MSBL

Besides the majorization-minimization technique, the Nuhc-

The main implication of (20) and (21) is that we can decrehse t tion in (17) can also be minimized by an expectation-maxatitn

function f(p) from f(p) to, let us say,f(p) by choosingp as
a minimizer of the majorizing functiop(p) or at least such that

9(p) > g(p):
f(®) <g(P) <9(P) = f(P) (22)

This is precisely the basic idea behind the majorizationimization

approach to solve the problem in (17), see, e.g. [7] and the re

erences therein. The usefulness of this approach depenuson
easier the minimization (or the decrease)(@p) is compared to
minimizing f(p) directly. In the present case, minimizip@p) is
much easier than minimizing(p) becausey(p) is (to within an
additive constant) a SPICE-like convex criterion functi@om-
pare it with (9) after replacing? by Y /+/M). Consequently, the
approach used in the previous subsection can be adopteativerb

(EM) algorithm.  Such an approach nameparse Bayesian
learning (SBL) has been suggested in [8] for the univariase;ca

and in [9] for the multivariate case where it was called MSBL.

For conciseness we present only the main steps of the MSBL

algorithm:

Iterative step :
"' =P B'R (i)Y
P = vl — () bR R )bk + 1BL12/M
k=1,...,. K+ N
R(i+1)= BP""'B*.
Final step :
The estimates o and X are obtained as:
Z=Q,
X = the firstK rows of Z
Wherch denotes the value @ obtained at the convergence.

to find a vectomp with the above property, for any givgn (25)

Following the said approach, we consider the augmented opti

mization problem : 3. NUMERICAL SIMULATIONS AND CONCLUDING

REMARKS
~ ~ K+4+N
min 2tr(Q Pl'Q)+ Y wipk In this section we numerically compare the performance ¢CEP
pQ k=1 (23) LIKES and MSBL. The data were generated via the model in (2)
stBQ=Y with N = 100, M = 10 andK = 1000. The sampling timest,, }

were uniformly randomly distributed betwegih— 20] sec. The
value of,,.. was chosen to b&0r rad/sec. In each of th&d
data snapshots,sinusoidal components were present. Each snap-
shot shares three common frequencies with its neighbonag-s
shots. Table 1 shows the values of the frequencies with eon-z
amplitudes in different snapshots. The amplitudes of alitang
sinusoidal components were chosersa3he noise was Gaussian
distributed with zero mean and variance equattdl he signal to

The minimizerQ (for fixed p) is given byQ, = PB*R"'Y
and substituting?,, into (23) yields the cost function in (20) (to
within an additive constant). By usir‘@ = 51, e 7BK+N}

and a calculation similar to (12)-(13), the minimize(for fixed
Q) can also be derived. The resulting LIKES algorithm conmgwis
an inner loop to minimize (or to decreagg)p) and an outer loop
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noise ratio (SNR) is defined by log(25/5). The three methods ) 1 KL
were initialized with the periodogram estimgted = b; Rb;. /N }. 0.05 1070 [70.85 [1.24 [ 145 [ 153 [1.66 [ 181 [ 2.40 [ 2.63
For all methods the convergence criterion used to termieté-

0.76 | 0.84 | 1.07 | 1.37 | 1.46 | 1.63 | 1.82 | 2.29 | 2.60 | 2.64
0.79 | 0.85 | 1.24 | 1.45 | 1.53 | 1.66 | 1.84 | 2.40 | 2.63 | 3.12
; ot —p'|| -3 : 7 6
erations was e < 107, In the case of LIKES, this con-

0.84 | 1.07 | 1.37 | 1.46 | 1.63 | 1.82 | 2.29 | 2.60 | 2.64 | 3.51
0.85 | 1.24 | 1.45 | 1.53 | 1.66 | 1.84 | 2.40 | 2.63 | 3.12 | 4.00
vergence criterion has been used in the outer loop whilertheri
loop has been run far iterations.

Frequenciesxm

(rad/sec)

Table 1. The frequencies of the sinusoidal components in the dif-
3.1. Statistical performance ferent data snapshots.

Figure 1 showd00 superimposed plots of amplitude spectra corre- ) . )
sponding to the (randomly picke@th data snapshot obtained with Parameter estimates and they do not require any selectibg-of

SPICE, LIKES and MSBL. The spectra obtained with all meth-Perparameters. We have also considered the previouslygedp

soidal components in most of the Monte-Carlo runs; furtreen e compared these three methods via numerical simulatiots a
the likelihood based approaches provide more accurateitanigl observed that LIKES and MSBL_are.more accurqte than SPICE
estimates than SPICE. Figure 2 shows the plots of averaga meBUt at the cost of extra computation time. Regarding LIKES an
square error (AMSE) of the amplitude estimates at the trae fr MSBL, we showed that LIKES converges faster than MSBL and
quency locations, as well as the probability of detectiotheftrue 1S that the NLL value that LIKES attains at convergencetman
frequencies vs SNR. The AMSE of the amplitude estimates wadightly smaller than the NLL value attained by MSBL.
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Fig. 1. One hundred superimposed plots of the amplitude spectraspumding to th&-th data snapshot estimated via a) SPICE, b) LIKES and ¢) MIBk circles
indicate the locations and amplitudes of the true compenienthe data. The SNR wa) dB. The peaks at the closely-spaced frequenciek &fr and1.847 appear
almost merged but in actuality they are distinct. The zoomplots show the spectrum in the interyal8 — 1.86] x « rad/sec to confirm this fact.
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Fig. 2. a) AMSE of amplitude estimates at the true frequency lonatics SNR b) Probability of detection of true frequencies MRSThe number of Monte-Carlo runs

was100.
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Fig. 3. a) Average computation times (sec) of SPICE, LIKES and MSBIS¥R, b) NLL values of LIKES and MSBL vs iteration number. (LIKES, + : MSBL).
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