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ABSTRACT
In this paper we deal with the problem of spectral-line analysis of
nonuniformly sampledmultivariate time series for which we intro-
duce two methods: the first method named SPICE (sparseiterative
covariance basedestimation) is based on a covariance fitting frame-
work whereas the second method named LIKES (likelihood-based
estimation ofsparse parameters) is a maximum likelihood tech-
nique. Both methods yield sparse spectral estimates and they do
not require the choice of any hyperparameters. We numerically
compare the performance of SPICE and LIKES with that of the re-
cently introduced method ofmultivariatesparseBayesianlearning
(MSBL).
Index Terms: Spectral analysis, multivariate data, nonuniform
sampling, covariance fitting, maximum likelihood, majorization-
minimization, expectation maximization.

1. DATA MODEL AND PROBLEM FORMULATION

Let {y(t) ∆
= [y1(t), · · · , yM (t)]

T ∈ CM×1} denote anM -variate
time series with each of its components satisfying the following
spectral-line model:

ym(tn) =
Cm
∑

l=1

rl,meiΩl,mtn + em(tn) n = 1, . . . , N

m = 1, . . . ,M

(1)

where{tn}Nn=1 denote the sampling times which can be nonuni-
formly placed. For anym, {rl,m ∈ C}Cm

l=1 denote the ampli-
tudes of theCm components located at the frequencies{Ωl,m ∈
[0,Ωmax],Ωmax ∈ R}Cm

l=1, respectively, and{em(tn)} denotes the
noise in the data. Given{ym(tn)}M,N

m=1,n=1 we want to estimate,
for m = 1, . . . ,M , the number of componentsCm and their corre-
sponding amplitudes{rl,m}Cm

l=1 and frequencies{Ωl,m}Cm

l=1. Thus
the problem is todetect the components in the model as well as to
estimate their amplitudes and frequencies, see e.g. [1] [2] and [3]
for motivation of this problem and some possible applications.

To tackle this problem, we divide the frequency interval
[0,Ωmax] into a set of uniformly spaced values with a spacing of
∆ and form a fine grid{ωl}Kl=1 such that the true frequencies lie on
(or, practically, close to) the grid i.e.,{Ωl,m}Cm,M

l=1,m=1 ⊂ {ωl}Kl=1.
A typical choice of∆ is 2π

10(tN−t1)
[1] [4]. Making use of the grid,

the data model in (1) can be re-written as follows :

ym
∆
=







ym(t1)
...

ym(tN )






=







eiω1t1 . . . eiωKt1

... . . .
...

eiω1tN . . . eiωKtN













x1,m

...
xK,m







+







em(t1)
...

em(tN )






m = 1, . . . ,M

(2)

for some{xl,m} (see below). Let

Y
∆
=

[

y1 · · · yM

]

, X
∆
=







x1,1 . . . x1,M

... . . .
...

xK,1 . . . xK,M







A
∆
=

[

a1 · · · aK

]

=







eiω1t1 . . . eiωKt1

... . . .
...

eiω1tN . . . eiωK tN







E
∆
=







e1(t1) . . . eM (t1)
... . . .

...
e1(tN ) . . . eM (tN )






.

(3)

We will refer to{ym} as the data snapshots. By using the above
matrix notation, (2) can be re-written as follows :

Y = AX +E = [A I]

[

X

E

]

∆
= BZ (4)

whereI denotes the identity matrix of dimensionN × N , and

B
∆
= [b1, . . . , bK+N ] = [A I]. Usually, the number of compo-

nents{Cm} is much smaller than the grid dimensionK, so that
only a few values of{xl,m} are non-zero i.e., for anym there exist
a set{ml̃} such that{xm

l̃
,m = rl,m} or, in other words, the matrix

X is row-sparse. Thus, we have transformed the nonlinear detec-
tion and estimation problem associated with (1) into a linear sparse
parameter estimation problem for (4).

By assuming that the noise sequences in the data snapshots
have zero means but possibly different variances, namely{σk}Nk=1,
and that they are uncorrelated with each other as well as withX,
the (normalized) covariance matrix ofY can be expressed as :

R
∆
= E [Y Y ∗] /M =

K
∑

l=1

M
∑

m=1

E[|xl,m|2]
M ala

∗
l

+diag(σ1, · · · , σN )
∆
= BPB∗

(5)

where

P = diag

(

M
∑

m=1

E[|x1,m|2]
M , · · · ,

M
∑

m=1

E[|xK,m|2]
M , σ1, · · · , σN

)

∆
= diag(p1, p2, · · · , pK+N)

(6)
whereE(·) denotes the expectation operation. The data sample
covariance matrix can be obtained as :

R̂ = 1
M

M
∑

m=1
ymy∗

m = Y Y ∗/M. (7)

The quantities{pl}Kl=1 in R represent the powers at the frequen-
cies{ωl}Kl=1, respectively. Although our primary interest is in the
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estimation ofX from Y , we will also estimate{pl}. In fact, in
the methods described in the following section we will startwith
the problem of estimating{pl} and an estimate ofX will be ob-
tained as a byproduct of the method. We would also like to point
out that apart from estimating the powers at different frequencies,
we also estimate the noise variances by estimating the quantities
{pl}K+N

l=K+1.
In Section 2, we introduce two new methods, namely SPICE

and LIKES, for estimating{pl} and X, briefly describe the
multivariate-SBL (MSBL) algorithm and duly refer to the pre-
vious relevant literature. In Section 3, we compare the statistical
performance of SPICE, LIKES and MSBL, as well as their com-
putational complexities and convergence properties, by means of
numerical simulations.

2. SPICE, LIKES AND MSBL

2.1. SPICE

Given R̂, the{pk} in R can be estimated as the solutions to the
following minimization problem :

min
p

∥

∥

∥R
−1/2(R− R̂)

∥

∥

∥

2

(8)

where‖ · ‖ denotes the Frobenius matrix norm,R−1/2 denotes a

Hermittian square root ofR−1, andp
∆
= [p1, · · · , pK+N ]

T with
eachpk ≥ 0. We have used this type of covariance fitting crite-
rion in [4] (for the spectral analysis of univariate time series, i.e.
M = 1) and, in a related form, in [5] (for spatial spectral analysis,
which is essentially equivalent to multivariate time series analy-
sis with M ≥ N ) to derive a sparse parameter estimation tech-
nique named SPICE (sparseiterativecovariance basedestimation).
Here we extend SPICE to the multivariate case withM ∈ (1, N).
By substituting the expression forR in (8) and expanding the cost
function we get the following equivalent formulation of theprob-
lem:

min
p

tr(R̂
∗
R−1R̂) +

K+N
∑

k=1

w2
kpk (9)

wherewk = ‖bk‖ and tr(·) denotes the matrix trace. The mini-
mization problem in (9) is convex and has a unique global mini-
mum. In fact, (9) can be cast as the following semi-definite pro-
gram (SDP),

min
p,{αl}

N
∑

l=1

αl +
K+N
∑

k=1

w2
kpk

s.t.

[

αl g∗
l

gl R

]

≥ 0 l = 1, . . . , N

(10)

where{αl} are auxiliary variables and[g1, · · · , gN ] = R̂. How-
ever, solving the SDP in (10) can be quite time consuming: for
instance this SDP cannot be solved on a general purpose PC even
for relatively modest dimensions (sayN = 100, M = 10 and
K = 1000). To tackle this computational issue, we follow [4] to
derive an iterative algorithm for the problem in (9).

Consider the following augmented problem:

min
p,Q

tr(Q∗P−1Q) +
K+N
∑

k=1

w2
kpk

s.t.BQ = R̂.

(11)

Minimization overQ (for fixedp) is straightforward: the solution
is given byQ0 = PB∗R−1R̂ (see, e.g., [1], Appendix A, Result
R35 and [5], Section III, Page 632). It is easy to verify that sub-
stitutingQ0 back into the cost function in (11) yields the original
problem in (9). Hence thep’s obtained from (9) and (11) must be
identical.

The minimization overp (for a givenQ) can also be done ana-
lytically as follows. UsingQ =

[

β1, · · · ,βK+N

]∗
, the optimiza-

tion problem in (11) (for fixed{βk}) can be reduced to

min
p

K+N
∑

k=1

‖βk‖2

pk
+

K+N
∑

k=1

w2
kpk. (12)

A simple calculation shows that

K+N
∑

k=1

(

‖βk‖√
pk

− wk
√
pk

)2

≥ 0 ⇐⇒
K+N
∑

k=1

(

‖βk‖2

pk
+ w2

kpk − 2wk‖βk‖
)

≥ 0 ⇐⇒
K+N
∑

k=1

(

‖βk‖2

pk
+ w2

kpk

)

≥
K+N
∑

k=1

2wk‖βk‖.

(13)

The left hand side in the above inequality is nothing but the cost
function in (12) and the equality holds only whenpk = ‖βk‖/wk.
Thus the minimizer of (12) is

pk = ‖βk‖
wk

k = 1, . . . ,K +N. (14)

Since the cost function in (11) is convex in bothQ andp, the cyclic
minimization overQ andp, i.e. minimization overQ (for fixedp)
and vice-versa, starting from any arbitrary initial point will lead to
the global minimum of (11). The(i + 1)-th iteration of the so-
obtained cyclic algorithm consists of the following steps:

Qi+1 = P iB∗R−1(i)R̂

pi+1
k =

‖βi+1

k
‖

wk
k = 1, . . . ,K +N

R(i+ 1) = BP i+1B∗.

(15)

(for initialization of (15)), as well as of the other yet-to-be derived
algorithms, see Section 3) An estimate ofZ, and hence ofX can
then be obtained as follows :

Ẑ = QcY (Y ∗Y /M)
−1

X̂ = the firstK rows ofẐ
(16)

whereQc denotes the value ofQ obtained at the convergence of
(15).

2.2. LIKES

LIKES, which stands forlikelihood-basedestimation ofsparse pa-
rameters, estimatesp by minimizing the Gaussian negative log-
likelihood (NLL) function :

f(p) = tr(R−1R̂) + ln|R|
= 1

M tr(Y ∗R−1Y ) + ln|R| (17)

The minimization problem in (17) is non-convex. In fact, it can
be shown that the two terms inf(p) are convex and concave in
p, respectively. In [6] we have derived a LIKES iterative algorithm
based on a majorization-minimization technique that minimizes the
above cost function in the univariate case. Here, followinga sim-
ilar approach to that in [6], we extend the LIKES algorithm tothe
multivariate case.
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Since the second term inf(p), viz. ln|R|, is a concave function
in p, it can be majorized by its tangent plane at any point. Letp̃

be an arbitrary point in the parameter space, and letR̃ denote the
corresponding covariance matrix; then :

ln|R| ≤ ln|R̃|+
K+N
∑

k=1

tr
(

R̃
−1

bkb
∗
k

)

(pk − p̃k)

= ln|R̃| −N +
K+N
∑

k=1

w̃2
kpk

(18)

where

w̃2
k = b∗kR̃

−1
bk. (19)

It follows from (18) that :

f(p) ≤
(

ln|R̃| −N
)

+ 1
M tr(Y ∗R−1Y ) +

K+N
∑

k=1

w̃2
kpk

∆
= g(p)

(20)
for any vectors̃p andp. Note also that

f(p̃) = g(p̃). (21)

The main implication of (20) and (21) is that we can decrease the
function f(p) from f(p̃) to, let us say,f(p̂) by choosingp̂ as
a minimizer of the majorizing functiong(p) or at least such that
g(p̃) > g(p̂):

f(p̂) ≤ g(p̂) < g(p̃) = f(p̃) (22)

This is precisely the basic idea behind the majorization-minimization
approach to solve the problem in (17), see, e.g. [7] and the ref-
erences therein. The usefulness of this approach depends onhow
easier the minimization (or the decrease) ofg(p) is compared to
minimizing f(p) directly. In the present case, minimizingg(p) is
much easier than minimizingf(p) becauseg(p) is (to within an
additive constant) a SPICE-like convex criterion function(com-
pare it with (9) after replacinĝR by Y /

√
M ). Consequently, the

approach used in the previous subsection can be adopted verbatim
to find a vector̂p with the above property, for any giveñp.

Following the said approach, we consider the augmented opti-
mization problem :

min
p,Q̃

1
M tr(Q̃

∗
P−1Q̃) +

K+N
∑

k=1

w̃2
kpk

s.t.BQ̃ = Y

(23)

The minimizerQ̃ (for fixed p) is given byQ̃0 = PB∗R−1Y

and substitutingQ̃0 into (23) yields the cost function in (20) (to

within an additive constant). By using̃Q =
[

β̃1, · · · , β̃K+N

]∗

and a calculation similar to (12)-(13), the minimizerp (for fixed
Q̃) can also be derived. The resulting LIKES algorithm comprises
an inner loop to minimize (or to decrease)g(p) and an outer loop

to recompute the weights{w̃k}, and can be summarized as follows:

The inner loop:
At iterationi+ 1:

Q̃
i+1

= P iB∗R−1(i)Y

pi+1
k =

‖β̃i+1

k ‖√
Mw̃k

k = 1, . . . ,K +N

R(i+ 1) = BP i+1B∗

The outer loop:
LettingRc ({pck}) denote theR ({pk})
obtained at convergence
(or after a pre-specified number of iterations)
of the inner loop, compute

w̃k =
√

b∗kR
−1
c bk

and then go to the inner loop. The inner loop will then be
initialized with{pck}.
Final step :
The estimates ofZ andX are obtained as

Ẑ = Q̃c

X̂ = the firstK rows ofẐ
whereQ̃c denotes the value of̃Q obtained at convergence of
the outer loop.

(24)

2.3. MSBL

Besides the majorization-minimization technique, the NLLfunc-
tion in (17) can also be minimized by an expectation-maximization
(EM) algorithm. Such an approach namedsparse Bayesian
learning (SBL) has been suggested in [8] for the univariate case;
and in [9] for the multivariate case where it was called MSBL.
For conciseness we present only the main steps of the MSBL
algorithm:

Iterative step :

Q̃
i+1

= P iB∗R−1(i)Y

pi+1
k = pik −

(

pik
)2

b∗kR
−1(i)bk + ‖β̃i+1

k ‖2/M
k = 1, . . . ,K +N

R(i+ 1) = BP i+1B∗.
Final step :
The estimates ofZ andX are obtained as:

Ẑ = Q̃c

X̂ = the firstK rows ofẐ
whereQ̃c denotes the value of̃Q obtained at the convergence.

(25)

3. NUMERICAL SIMULATIONS AND CONCLUDING
REMARKS

In this section we numerically compare the performance of SPICE,
LIKES and MSBL. The data were generated via the model in (2)
with N = 100, M = 10 andK = 1000. The sampling times{tn}
were uniformly randomly distributed between[0 − 20] sec. The
value ofΩmax was chosen to be10π rad/sec. In each of the10
data snapshots,5 sinusoidal components were present. Each snap-
shot shares three common frequencies with its neighboring snap-
shots. Table 1 shows the values of the frequencies with non-zero
amplitudes in different snapshots. The amplitudes of all existing
sinusoidal components were chosen as5. The noise was Gaussian
distributed with zero mean and variance equal toσ. The signal to

447



noise ratio (SNR) is defined by10 log(25/σ). The three methods
were initialized with the periodogram estimate{p0k = b∗kR̂bk/N}.
For all methods the convergence criterion used to terminatethe it-

erations was :‖p
i+1−pi‖
‖pi‖ < 10−3. In the case of LIKES, this con-

vergence criterion has been used in the outer loop while the inner
loop has been run for10 iterations.

3.1. Statistical performance

Figure 1 shows100 superimposed plots of amplitude spectra corre-
sponding to the (randomly picked)7-th data snapshot obtained with
SPICE, LIKES and MSBL. The spectra obtained with all meth-
ods are sparse and they correctly indicate the presence of sinu-
soidal components in most of the Monte-Carlo runs; furthermore
the likelihood based approaches provide more accurate amplitude
estimates than SPICE. Figure 2 shows the plots of average mean
square error (AMSE) of the amplitude estimates at the true fre-
quency locations, as well as the probability of detection ofthe true
frequencies vs SNR. The AMSE of the amplitude estimates was
calculated as:

AMSE = 1
5000

100
∑

k=1

10
∑

m=1

5
∑

l̃=1

∣

∣

∣
x̂k
m

l̃
,m − 5

∣

∣

∣

2

(26)

where{ml̃}5l̃=1
denote the frequency indices corresponding to the

5 sinusoidal components present in them-th snapshot, and the su-
perscriptk in x̂k

m
l̃
,m denotes the Monte-Carlo run. The probability

of detection was computed by first picking the5 dominant peaks of
the estimated spectrum, sorting the frequencies corresponding to
those peaks, and then calculating the mean absolute error ofthose
frequency estimates: if the mean absolute error is equal to zero
then we have a detection, else we declare a miss. It can be ob-
served from the plots in Figure 2 that SPICE is less accurate than
LIKES and MSBL for both amplitude and frequency estimation,
and that LIKES is slightly better than MSBL in the case of ampli-
tude estimation.

3.2. Complexity and convergence rate

The computational complexity per iteration (in flops) of thecon-
sidered methods is on the order ofO(2N3 + 2N2M + 2KMN +
KN2+KM +NM) with MSBL requiring an additionalKN2+
N3 flops to compute the terms in the power update formula, see
(25). However, the convergence rates of the three methods differ
quite a bit from one another, which leads to rather differentexecu-
tion times. Figure 3a shows the average computation times (in sec)
per run vs SNR; it is seen from this figure that the times decrease
with increasing SNR, which is primarily due to the fact that the
methods converge faster as the SNR increases. For a fixed SNR,
SPICE is faster than LIKES which is faster than MSBL.

As both LIKES and MSBL minimize the same NLL criterion,
it is interesting to compare their convergence rates and thevalues
of NLL they attain at convergence. Figure 3b shows the NLL value
vs the iteration number for LIKES and MSBL in one Monte-Carlo
run; it can be seen from this plot that LIKES converges fasterthan
MSBL and also that the value of NLL that it attains at convergence
is slightly lower than the NLL value attained by MSBL.

3.3. Concluding remarks

To conclude, based on our recent work we have introduced two
methods to solve the problem of spectral-line analysis for nonuni-
formly sampled multivariate time series. Both methods yield sparse

F
re

qu
en

ci
es
×
π

(r
ad

/s
ec

)

Snapshot number
1 2 3 4 5 6 7 8 9 10

0.05 0.79 0.85 1.24 1.45 1.53 1.66 1.84 2.40 2.63
0.76 0.84 1.07 1.37 1.46 1.63 1.82 2.29 2.60 2.64
0.79 0.85 1.24 1.45 1.53 1.66 1.84 2.40 2.63 3.12
0.84 1.07 1.37 1.46 1.63 1.82 2.29 2.60 2.64 3.51
0.85 1.24 1.45 1.53 1.66 1.84 2.40 2.63 3.12 4.00

Table 1. The frequencies of the sinusoidal components in the dif-
ferent data snapshots.

parameter estimates and they do not require any selection ofhy-
perparameters. We have also considered the previously proposed
method of MSBL that minimizes the same NLL function as LIKES.
We compared these three methods via numerical simulations and
observed that LIKES and MSBL are more accurate than SPICE
but at the cost of extra computation time. Regarding LIKES and
MSBL, we showed that LIKES converges faster than MSBL and
also that the NLL value that LIKES attains at convergence canbe
slightly smaller than the NLL value attained by MSBL.
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Fig. 1. One hundred superimposed plots of the amplitude spectra corresponding to the7-th data snapshot estimated via a) SPICE, b) LIKES and c) MSBL. The circles
indicate the locations and amplitudes of the true components in the data. The SNR was40 dB. The peaks at the closely-spaced frequencies of1.82π and1.84π appear
almost merged but in actuality they are distinct. The zoom-in plots show the spectrum in the interval[1.8− 1.86] ×π rad/sec to confirm this fact.
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Fig. 2. a) AMSE of amplitude estimates at the true frequency locations vs SNR b) Probability of detection of true frequencies vs SNR. The number of Monte-Carlo runs
was100.
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Fig. 3. a) Average computation times (sec) of SPICE, LIKES and MSBL vs SNR, b) NLL values of LIKES and MSBL vs iteration number (o : LIKES, + : MSBL).
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