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ABSTRACT

Asynchronous signal processing is an appropriate low-power
approach for the processing of bursty signals typical in
biomedical applications and sensing networks. Different
from the synchronous processing, based on the Shannon-
Nyquist sampling theory, asynchronous processing is free
of aliasing constrains and quantization error, while allowing
continuous-time processing. In this paper we connect level-
crossing sampling with time-encoding using asynchronous
sigma delta modulators, to develop an asynchronous decom-
position procedure similar to the Haar transform wavelet
decomposition. Our procedure provides a way to reconstruct
bounded signals, not necessarily band-limited, from related
zero-crossings, and it is especially applicable to decompose
sparse signals in time and to denoise them. Actual and syn-
thetic signals are used to illustrate the advantages of the
decomposer.

Index Terms— Continuous-time digital signal process-
ing, time-encoding of signals, level-crossing sampling, asyn-
chronous sigma delta modulators, asynchronous signal pro-
cessing.

1. INTRODUCTION

The recent interest in asynchronous processing of signals
is due to applications where low power consumption and
continuous-time processing are essential. The range of ap-
plications of asynchronous processing goes from biomedical
implants [1, 2, 3] to sensor networks in health, military and
home [4], for which processing and communication is limited
by power consumption. Asynchronous processing outweighs
the traditional Shannon-Nyquist synchronous processing not
only in power consumption but in the possible continuous-
time signal processing [5, 6, 7]. Given the bursty nature of
many biomedical signals, signal-dependent sampling proce-
dures are more appropriate than uniform-sampling.

Uniform sampling resulting from the Shannon-Nyquist
sampling theory cannot be implemented in many situations,
for instance when the nodes of a sensor network have limited
sensing and processing power, or due to sensor problems. In
other situations uniform sampling is not desirable due to the

required high sampling rates and complex processing. Sig-
nals collected from sensor nodes or health monitoring devices
exhibit sparse nature in time in many applications. They are
almost zero most of the time and changes occur on brief inter-
vals, which challenge the analog to digital conversion given
the high sampling rates required. The asynchronous sampling
methods are an efficient alternative.

Uniform sampling approximates a signal by a Riemann
sum, while level-crossing (LC) — a non-uniform method that
reverses the roles of amplitude and time in the sampling —
does the approximation by a Lebesgue sum. The significance
of LC is that it follows the signal by sampling more often
whenever the signal varies rapidly and less otherwise. The
“opportunistic nature” of LC [8, 9, 13] is similar to the way
compressive sensing deals with sparse signals [10]. Both look
for compression or sparseness in the representation. Although
LC sampling requires a-priori a set of quantization levels,
typically uniform, and the samples need to be coupled with
the times at which they occur, it provides a representation free
of aliasing and quantization error.

A different approach, based on time-encoding, is provided
by an asynchronous sigma delta modulator (ASDM), a non-
linear feedback system, that represents the signal amplitude
by a binary signal with zero-crossing times at different scale
parameters. When comparing the LC and the ASDM sam-
pling schemes, it can be shown that the ASDM is a LC sam-
pler with quantization levels given by local estimates of the
signal average for a certain scale. The information available
in the binary signal can only provide a multi-level approxima-
tion to the signal for any particular scale setting in the ASDM.
As we will show, using different scales it is possible to get
representations that closely approximate the signal. Thus the
idea of a decomposition procedure using ASDMs — each
with different scales — is similar to the wavelet decompo-
sition. The multilevel signals at each scale are represented by
sequences of local averages and their location times provid-
ing a compressed representation of the signal. The proposed
decomposition can be related to the Haar transform wavelet,
which is very appropriate for multi-level signals.

Advantages of the asynchronous decomposition are: ana-
log in nature, uses scale instead of frequency for the decom-
position, and it does not suffer from aliasing — it thus applies
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to non band-limited signals. Moreover, it provides a recursive
signal reconstruction of the signal from zero-crossings [11].
In this paper we illustrate the sampling, and reconstruction of
sparse continuous-time signals using the proposed procedure.

2. ASYNCHRONOUS SAMPLING AND
RECONSTRUCTION

The complexity of reconstructing a signal in an interval
[ta, tb] can be measured using the number of degrees of
freedom in the sampled signal xs(t) in the interval [12]. In
non-uniform sampling, it is not only necessary to have the
amplitude of the samples but also their occurrence times, and
as such compared with uniform sampling the reconstruction
of the original signal is more complex. Level crossing (LC)
sampling is a non-uniform procedure that for a given set of
quantization levels it generates a non-uniform sampled signal
where each sample is taken whenever the signal attains one
of these quantization levels (See Fig. 1). Although recon-
struction of the original signal from such sampled signal is
more complex than that of a uniform sampled signal, LC sam-
pling is less restrictive in other ways. It does not require the
band-limited condition of uniform sampling and is also free
of quantization. More importantly LC is signal dependent —
samples are only taken when the signal is significant.
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Fig. 1. Level crossing for fixed quantization levels.

A related sampling system is obtained with the asyn-
chronous sigma delta modulator (ASDM) shown in Fig. 2,
which is a nonlinear feedback system consisting of an in-
tegrator and a Schmitt trigger [2]. The ASDM maps the
amplitude information of a bounded input signal x(t) into a
time sequence tk, or the zero crossings of the binary output
z(t) of the ASDM. The bounded signal x(t) and the zero-
crossing times {tk} of the ASDM output z(t) are related by
the integral equation [2]

Z tk+1

tk

x(⌧)d⌧ = (�1)k[�b(tk+1 � tk) + 2�] (1)

where b, � and  are parameters of the ASDM. A multi-level
approximation for x(t), that depends on the scale parameter
, is obtained by connecting the width of the pulses in z(t)

+ �

1



Z
dt

x(t) y(t) z(t)
b

�b

��

�

�1

1

t1

t2

t3

tSchmitt Trigger
Integrator

z(t)

y(t)

t

Fig. 2. Asynchronous sigma delta modulator

with local averages of the signal. This multi-level approxi-
mation can be seen as the output of a zero-order hold non-
uniform sampler.

Letting � = 0.5, b = 1 and some , adding two consecu-
tive integral equations as in (1), we have
Z t,k+2

t,k

x(⌧)d⌧ = [(t,k+2 � t,k+1)| {z }
�,k

� (t,k+1 � t,k)
| {z }

↵,k

]

where ↵,k and �,k are defined as in Fig. 3. If we then let
T,k = �,k + ↵,k, then the local average

x̄,k =
1

T,k

Z t,k+1

t,k

x(⌧)d⌧ +
1

T,k

Z t,k+2

t,k+1

x(⌧)d⌧

=
↵,k � �,k

↵,k+�,k

(2)

Thus, x̄,k or the local average in [t,k, t,k+2] corresponds
to the difference of the areas under two consecutive pulses
in z(t) divided by the length of the two pulses. Using these
connection between z(t) and the local averages, we can obtain
a multi-level approximation of x(t) that would be equivalent
to one using a level-crossing sampler with quantization levels
{x̄k}. If we consider the x̄k the best linear estimator of the
signal in [t,k, t,k+2] when no data is provided, the time-
encoder can be thought of an optimal LC sampler. This would
require to process the signal first with an ASDM and then to
use the obtained local averages as the quantization levels for
the LC.

The scale parameter  relates to the maximum frequency
of the signal. Indeed, using that |x(t)|  c and that b > c, we
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Fig. 3. The parameters ↵,k and �,k in z(t) for some scale
.
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obtain

�c(tk+1 � tk) 
Z tk+1

tk

x(⌧)d⌧  c(tk+1 � tk)

Replacing (1), and solving for  we have that

(b � c)(tk+1 � tk)

2�
<  <

(b + c)(tk+1 � tk)

2�
(3)

In the case of non-uniform sampling, a sufficient condition for
reconstruction of band-limited signals is that the maximum of
{tk+1 � tk} should be less the sampling period Ts. In such a
case letting � = 0.5, b = 1 and b = c+�, positive � ! 0, the
relationship with the maximum frequency fmax of the signal
is

  (2c + �)Ts  1 � 0.5�

fmax
⇡ 1

fmax
. (4)

To obtain an expansion of the signal for different scales,
just as in wavelet analysis we generate a basis for z(t). The
most suitable is the Haar basis which is generated from the
normalized mother function

 (t) =

8
<

:

1 0  t <

1
2

�1 1
2  t < 1

0 otherwise
(5)

that generates the contracted and shifted wavelet family for
integers m � 0 and k � 0,

 m,k(t) = 2(m/2)
 (2m

t � k)

forming an orthonormal basis in the square–integrable space.
The indice m is scaling index, k time translation and the term
2m/2 maintains a constant norm independent of scale m. This
permit us to expand any signal ⇣(t) in that space as partial
sum that converges in the mean square metric,

⇣̂(t) =
X

m,k

�m,k m,k(t)

where the expansion coefficients are averages of the signal for
difference scales {1/2m}, m = 0, 1, · · · :

�m,k =
1

2m

"Z tm,k+1

tm,k

⇣(t)dt �
Z tm,k+2

tm,k+1

⇣(t)dt

#
(6)

where tm,k+2 � tm,k = 1/2m and tm,k+1 � tm,k = 1/2m+1
.

There is clearly similarity between the local averaging for
some  in equation (2) and these equations. The local av-
erages obtained from the output of the ASDM for different
scales provide an approximation to the signal. In the follow-
ing section we propose a decomposition procedure similar to
the Haar transform wavelet that uses the ASDM.

3. ASYNCHRONOUS DECOMPOSITION

Figure 4 displays the decomposer for three levels. At an ini-
tial scale 0 the output of the ASDM is used to find the corre-
sponding local averages from which we obtain a smooth out
multilevel signal using an averager and a low-pass filter. For
L decomposition levels the detail signals are

f0,1(t) = x(t) � d0,1(t)

f1,2(t) = d0,1(t) � d1,2(t)

...
fL�1,L(t) = dL�2,L�1(t) � dL�1,L(t) (7)

with scale factors

` = 0/2`
` = 1, · · · , L

From (7) we obtain the following expansion for the signal

x(t) =
LX

`=1

f`�1,`(t) + dL�1,L(t) (8)

corresponding to the different levels with different scales.

3.1. Representation of sparse signals in time

The above decomposition is especially appropriate for sparse
signals in time. Modeling a sparse signal as

s(t) =
X

k

↵kp�(t � tk) + ⌘(t)

where p�(t) = u(t) � u(t � �), � ! 0

that is, s(t) is a sequence of very narrow pulses located at
arbitrary times tk and embedded in noise ⌘(t) with a variance
much smaller than that of the signal.

Assuming the noise ⌘(t) is zero mean, the above de-
composition for an appropriate scale 0 will pick the narrow
pulses as

d1(t) =
X

k

↵kp�(t � tk)

and the detail signal f1(t) = ⌘(t) would be the noise. For
a real sparse signal, it would be necessary to consider more
than one decomposition level with different scales.

4. SIMULATIONS

To illustrate the performance of the decomposer we apply it to
heart sound records [14, 15] which are inherently sparse. The
analyzed signal and the decomposed parts for the first three
levels are shown in the left plot of Fig. 5. As we can see
from the resulting spectra in the right plot of the same figure,
d(t) and f(t) waveforms correspond to slowly and rapidly
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Fig. 4. Decomposer
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Fig. 5. Left plot: outputs of the first three levels of the decomposer to a heart sound signal (top). Right plot: Corresponding
spectra.

changing parts of the signal. The component d1(t) is the lo-
cal average approximation of the input signal while f1(t) is
the error of this approximation. The initial value of the scale
parameter, 0, used in the first level of the decomposer leads
to averaging over a narrow window of the signal, while the
smaller {`} in the subsequent levels provide averaging over
a wider window for the {d`}. The component d3(t) indicates
the point at which the decomposition is terminated, as feeding
d3(t) into another level reveals no further information. The
reconstruction error, using only these three levels, is smaller
than 10�15.

In a second simulation, meant to stress the denoising be-
havior of the proposed scheme, we consider a sparse signal
embedded in noise. The reconstruction performance under
30dB SNR is shown in Fig. 6. It takes only one level of
decomposition with a proper  value to accurately recover
the sparse signal. This also means that the signal can be re-
constructed from the resulting local averages with their width
lengths. For this highly sparse signal 6.6% compression is ob-
tained. Also approximation by using Haar wavelet resulted in
21% compression. We anticipate that this compression and
signal dependent noise canceling feature is highly promis-

ing for continuous processing of bursty signals embedded in
noise.

To simulate the denoising behavior for different levels
of noise, 300-trial Monte Carlo simulation was performed.
Noise with SNR values between �10 to 15 dB was added
to the original signal and reconstructed using our algorithm.
Computing the average mean-square error for each SNR we
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Fig. 6. Reconstruction under noise: original noise-free signal
(top), noisy signal with SNR 30dB (middle), and denoised
signal (bottom).

857



obtain the results shown in Fig. 7. The performance from
SNR �10 dB and zero is significant, and for additive noise
with SNR higher than 10 dB the performance of the algorithm
levels off.
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Fig. 7. Mean Square Error of the reconstructed signal for
different SNR values

5. CONCLUSION

In this paper we consider asynchronous processing of sparse
signals appearing in biomedical and wireless sensor applica-
tions. A scale–based representation is suggested for enabling
efficient transmission of spiky or bursty data in biomedical
implants or sensor networks that run on batteries. The alias-
free continuous scheme exploiting the sparse behavior results
in remarkable compression while asynchronous design signi-
fies low-power dissipation. The proposed algorthm is robust
to noise while having low computational complexity. The re-
covery results are promising given the obtained high degree of
compression with adequate accuracy. Integrating our proce-
dure with wavelets allows us to investigate the realizability of
a simple yet efficient transmission and retrieval of such preva-
lent signals.
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