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ABSTRACT

In GPS navigation, an accuracy of about 10 m can be cur-
rently obtained, but this performance can be strongly de-
graded in a multipath environment. The multipath directly
impact the distribution of the additive noise corrupting the
distance measurements between the satellites and the GPS
receiver. They are modeled either as variance jumps if there
is a direct path between the satellites and the receiver or as
mean-value jumps otherwise. The originality of our approach
is to take into account the spatial dependencies between GPS
measurements when modeling multipath occurrences. In-
deed, if two signals from satellites have close directions of
arrival, they are very likely to be simultaneously degraded
by multipath. For that purpose, we suggest using a Boltz-
mann machine which provides a ”natural” setting to define
interactions between the GPS measurements. Then, as the
proposed model is strongly non linear and non Gaussian, we
jointly estimate the mobile location and perform the multipath
detection/estimation by using particle filtering.

Index Terms— Boltzmann machine, GPS navigation,
multipath, particle filtering.

1. INTRODUCTION

Thanks to the Global Positioning System (GPS), every
user can obtain his position anywhere on earth. For that
purpose, the GPS receiver estimates the propagation de-
lays of signals transmitted by a constellation of satellites
of known locations. Then, range measurements are com-
puted through multiplication by the velocity of light in
vacuum i.e. c = 3 · 108 m/s. As both the receiver posi-
tion and its clock offset with respect to the GPS reference
time must be estimated, at least four satellite measurements
are required to solve the navigation problem.

Today, an accuracy of about 10 m can be nominally
achieved. However, the GPS performance can strongly de-
teriorate in urban environments due to the multipath phe-
nomenon. It happens when different replicas of the satellite
signal, incoming from reflections on nearby obstacles, reach
the receiver. To mitigate multipath effects, several methods
have been designed. See chapter 7 in [7]. Among them,
antenna arrays can be used to reject the reflected signals.

Alternative solutions consist in improving the correlation
techniques implemented at the receiver to estimate the prop-
agation delays of the satellite signals. Another class of ap-
proaches deals with multipath effects directly at the level of
the navigation algorithm which estimates the position from
the satellite ranging measurements. They have the advantage
of avoiding any modification of the receiver architecture. In
[4], the multipath are modeled by jumps of the variance of the
additive measurement noise if there is a line of sight path be-
tween the satellite and the receiver. Otherwise, jumps of the
mean value of the additive measurement noise are considered.
In [4], Spangenberg et al. propose to detect and compensate
for these jumps by using generalized likelihood ratio tests.
More recently, in [8], the measurement noise is modeled by
using non-parametric approaches based on Dirichlet Process
Mixtures. Nevertheless, the satellite signals are assumed to
be independent even if in reality two satellite signals whose
directions of arrival are close to each other are very likely to
be simultaneously affected by multipath.

This paper deals with line-of-sight multipath which are
the more frequent in GPS navigation due to the satellite
elevation angles. The detection of multipath is handled by in-
troducing a random vector with as many components as GPS
measurements. They can take two different values which
indicate whether there is multipath or not. Our contribution
is to model the dependencies between the above-mentioned
binary random variables by using a Boltzmann machine (BM)
[1]. Thus, the joint occurrence of multipath on close satellite
signals can be favored. Indeed, BM admit a closed-form
parametric expression so that the practitioner can easily de-
fine a dependence structure by tuning the parameters. A fully
Bayesian hierarchical model is proposed to jointly address
the multipath detection/estimation and the mobile location.
Then, as the proposed model is strongly non linear and non
Gaussian, particle filtering is used to perform this estimation.
Note that an approximation of the so-called optimal simula-
tion law is also derived [6].

The paper is organized as follows: in section 2, BM are
presented. Section 3 details the Bayesian hierarchical model
of the GPS navigation problem in the presence of multipath.
Section 4 describes the proposed particle filter algorithm.
Finally, the results obtained on simulated GPS data are dis-
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cussed in section 5.

2. BOLTZMANN MACHINES

BM have been lately used in various applications including
sparse representation modeling [1], neural-network-based
pattern recognition [2], etc.
A BM is a Markov random field which consists of a set of
binary random variables {c(1), · · · , c(n)} whose joint prob-
ability distribution takes the form:

Pr[c|b,W] =
1

Z(b,W)
exp

(
bT c +

1

2
cTWc

)
(1)

where c = [c(1), · · · , c(n)]T takes its values in {−1, 1}n, W
is an n-by-n symmetric matrix and b = [b(1), · · · ,b(n)]T

is an n-component real-valued vector. To normalize the BM
distribution, the so-called partition function Z(b,W) must
be chosen as follows:

Z(b,W) =
∑
ξ∈S

exp

(
bT ξ +

1

2
ξTWξ

)
(2)

where S denotes the set of all possible states that can be taken
by c. In addition, by denoting wij the coefficient of the ith

row and jth column of W, one has:
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Therefore, {wii}ni=1 can be set to 0 since they contribute to a
constant in the function cTWc.

Fig. 1. representation of the BM as an undirected graph for n = 4

The BM allows the practitioner to define in a convenient
manner a structure of dependence between the binary random
variables {c(k)}nk=1 by means of W. To better understand
the role played by W and b, the BM distribution can be
represented by using an undirected graph as shown in Fig. 1.
1) Thus, a non-zero entry wij in the matrix W results in an
edge connecting nodes i and j with a specific weight. It char-
acterizes the interaction between the random variables c(i)
and c(j). For an excitatory interaction defined by wij > 0,
both c(i) and c(j) tend to take the same value whereas they

tend to have opposite values for an inhibitory interaction
characterized by wij < 0.
2) In addition, the so-called bias b(k) is associated with the
node k and defines the marginal behavior of the random vari-
able c(k). Setting W = 0 in the BM distribution (1) leads to
Pr[c|b,W = 0] = 1

Z(b,W)

∏n
k=1 exp(b(k)c(k)).

This corresponds to statistically independent {c(k)}nk=1. In
this case, it can be easily shown that Pr[c(k) = −1] =
exp(−2b(k))Pr[c(k) = 1] for k = 1, · · · , n. Since
Pr[c(k) = −1] + Pr[c(k) = 1] = 1, one has:

Pr[c(k) = 1] =
1

1 + exp(−2b(k))
(3)

Note that when W is nonzero, (3) no longer holds. How-
ever, the intuition remains true that a positive value for b(k)
favors a value equal to 1 for c(k) whereas a negative value for
b(k) favors a value equal to -1 for c(k).

3. BAYESIAN MODELING OF THE PROBLEM

Here, the problem is to decide whether the GPS measure-
ments are affected or not by multipath and, if so, to take into
account this unwanted phenomenon when estimating the dy-
namics of the mobile equipped by the GPS receiver. In the
following, the dynamics of the mobile is described by a set
of variables contained in the state vector xt of size nx. 3 of
its components include the position coordinates of the mobile
pt = [xt, yt, zt]

T in a reference coordinate system, here the
ECEF, but the others depend on the considered motion model.

3.1. Observation equation

The estimation of the state vector xt is based on the mea-
surement vector Zt storing the GPS measurements from nt
satellites at time instant t. nt is likely to vary with time due
to the relative geometry of the receiver and the satellites. The
kth component of the column vector Zt, with k = 1, · · · , nt,
can be expressed as follows:

Zt(k) = ‖pt − pkt ‖+ bt +
√
φt(k)vt(k) (4)

where the vector pkt = [xkt , y
k
t , z

k
t ]T contains the 3 position

coordinates of the satellite k and ‖.‖ is the Euclidian norm.
bt denotes the GPS receiver clock offset with respect to the
GPS reference time and vt(k) is a zero-mean white Gaussian
random process with unit variance. Finally, φt(k) denotes
the variance of the additive measurement noise. Its value
differs if multipath occur or not. When the measurement
from the kth satellite is not affected by multipath, φt(k) is
conservatively set to σ2

0 , with σ0 the nominal measurement
noise standard deviation equal to 8 m. On the contrary, if
multipath degrade the measurement, φt(k) 6= σ2

0 . Its value
becomes unknown and hence must be estimated.
Therefore, multipath detection has also to be addressed and
can be handled by introducing a discrete-valued nt-component
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vector ct. If the kth measurement is affected by multipath at
time t, ct(k) = 1. Otherwise, it is equal to −1.
As we aim at estimating these parameters in a Bayesian
framework, the prior distribution of ct has to be defined.
A simple choice of prior probabilities, considering inde-
pendent ct(k), could be Pr[ct(k) = −1] = 0.5 and
Pr[ct(k) = 1] = 0.5. Nevertheless, the latter choice would
not be realistic since the characteristics of the environment
vary in time. Furthermore, as the satellite measurements are
not independent of each other, we decide to adopt a joint dis-
tribution for the vector ct that allows the practitioner to define
a dependence structure between its components. This distri-
bution is chosen by using (1) and is denoted as Pr[ct|bt,Wt]
with bt the nt-component real-valued bias vector at time t
and Wt the nt-by-nt interaction matrix at time t. The vector
bt represents the marginal behavior of the random variables
ct(k) and needs also to be estimated since it varies according
to the environment. In this work, we propose to set the ma-
trix Wt in order to define the desired dependence structure
between the components of ct.

Therefore, our purpose in the following is to recursively
estimate from the sets of measurements the (nx + 3nt)-
component extended state vector Xt = [xTt ,φ

T
t , c

T
t ,b

T
t ]T ,

containing the variables to be estimated. Before expressing
the transition distribution of Xt, note that it can be factored
by using Bayes’ rule and by taking into account the indepen-
dencies between the random variables as follows:

p(Xt|Xt−1) = p(φt|φt−1, ct, ct−1)Pr[ct|bt,Wt]

× p(bt|bt−1)p(xt|xt−1)
(5)

3.2. Prior distributions of the state vector components

A) The state vector xt =
[
pTt , ṗ

T
t , bt, dt

]T
is assumed to sat-

isfy a second-order model, with ṗt = [ẋt, ẏt, żt]
T a vector

containing the 3 velocity coordinates of the mobile and dt the
receiver clock drift with respect to the GPS reference time.
The evolution of xt is described classically by the transition
law:

p(xt|xt−1) = N (xt; Fxt−1,Q) (6)

where N (xt; Fxt−1,Q) denotes the multivariate Gaussian
law with argument xt, mean vector Fxt−1 and covariance
matrix Q, F and Q being block diagonal matrices. These
latter are for instance detailed in [3].

B) We propose to model the vector ct as a BM. Thus, its
distribution is:

Pr[ct|bt,Wt] =
1

Z(bt,Wt)
exp

(
bTt ct +

1

2
cTt Wtct

)
(7)

Let us recall that Wt is user-chosen whereas bt is estimated,
hence its evolution must be modeled.
How to select Wt:
Two satellite signals having close directions of arrival have

a high probability of being simultaneously affected by multi-
path. Thus, the components of ct should not be independent.
Therefore Wt 6= 0. To favor the simultaneous occurrence
of multipath in measurements associated to two satellites, we
suggest defining the entries of the matrix Wt as follows:
The entry wij is used to represent the angular proximity of
satellites i and j. A possible measure of the latter is the direc-
tor cosine of the angle θi,j between the directions of the two
satellites with respect to the receiver (See Fig. 2):

wij = cos θi,j =
< pit − pt,p

j
t − pt >

‖pit − pt‖ · ‖pjt − pt‖
(8)

where pit, pjt contains respectively the 3 position coordinates
of satellites i, j and < ·, · > denotes the dot product operator.

Note that when the dot product in (8) becomes negative,
the angle θi,j between the directions of the satellites exceeds
π/2. In this case, we can reasonably consider them as inde-
pendent and we suggest setting: wij = 0.

Fig. 2. deviation between the angular directions of two satellites in
the constellation

How to model bt :
The way the real-valued biases bt(k) evolve in time can be
modeled by a normal distribution as follows:

p(bt(k)|bt−1(k)) = N (bt(k);µb(k),σ2
b(k)) (9)

Here, the parameters µb(k) and σ2
b(k) must be tuned to in-

troduce a temporal dependency favoring the following phe-
nomenon: when operating in a multipath-free environment at
time instant t, the probability that no multipath occur for fu-
ture time instants must be high. Likewise, when operating in a
multipath environment, the probability that the multipath are
still present for future time instants must also be high. Then,
a possible choice of parameters consists of µb(k) = bt−1(k)
and σ2

b(k) = σ2
b with bt−1(k) the kth component of the bias

vector at the previous time instant t − 1 and σ2
b the variance

of bt(k) that must be chosen sufficiently small to favor the
desired temporal correlation on bt(k).
The joint probability density function (PDF) of bt is then de-
fined as follows:

p(bt|bt−1) =

nt∏
k=1

p(bt(k)|bt−1(k)) = N (bt;µb,Rb)

(10)
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where Rb = σ2
b Int and Int is the identity matrix of size

nt-by-nt.
C) We propose to define the prior distribution of the vector φt
by considering different scenarios as follows:
C.1) when multipath appear on the kth satellite at time in-
stant t, i.e. ct(k) = 1 and ct−1(k) = −1, the prior distribu-
tion of φt(k) must favor values of the variances higher than
σ2

0 for the observation noise. Classically, truncated Gaussian
laws and log-Normal laws have been used to define the prior
PDF of noise variances. Here, we suggest using an Inverse
Gamma (IG) [5] distribution to model φt(k). As this will
be explained in section 4.2, the latter makes it possible to
compute analytically the simulation law of the particle filter.
Therefore, one has:

p(φt(k)|φt−1(k), ct(k), ct−1(k)) = IG(φt(k); ε) (11)

where IG(φt(k); ε) is the IG PDF with argument φt(k) and
parameters ε = [α, β]T . It can be expressed as follows:

IG(φt(k); ε) =
βα

Γ(α)
φt(k)−α−1 exp

(
−β
α

)
where βα

Γ(α) is a normalizing constant.
The parameters are tuned so that the prior is not informative
(See Fig. 3, dashed curve).
C.2) when the kth satellite is affected by multipath at time
instant t that were already detected at time instant t − 1, i.e.
ct(k) = 1 and ct−1(k) = 1, the prior distribution of φt(k)
must favor variances approximately equal to the correspond-
ing previous values. This hence means that there is still a mul-
tipath. In this case, we assign to φt(k) an IG prior with its
parameters tuned so that the latter is peaked around the previ-
ous value of the observation noise variance, namely φt−1(k)
(See Fig. 3, plain curve).
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Fig. 3. inverse-gamma PDF in a non-informative case (dashed
curve) and a peaked case (plain curve)

4. ESTIMATION WITH PARTICLE FILTERING
4.1. Presentation of particle filtering

The aim is to estimate the a posteriori distribution p(X1:t|Z1:t),
where X1:t = X1, · · · ,Xt and Z1:t = Z1, · · · ,Zt, and more
particularly the marginal density p(Xt|Z1:t). In general, this
latter cannot be determined analytically.
To estimate the extended state vector Xt, we choose a particle
filter (PF). This class of algorithms allows not only non linear
and/or non Gaussian models to be dealt with, but also state

vectors comprising both continuous and discrete-valued vari-
ables. PF, also known as sequential Monte Carlo methods,
provide a discrete approximation of this distribution:

P̂N (Xt) =

N∑
i=1

w
(i)
t δ(Xt −X

(i)
t ). (12)

The N support points are called particles and they are propa-
gated sequentially according to a proposal law q(Xt|Xt−1,Zt).
They are assigned weights w(i)

t to correct for the discrepancy
between the target law and the proposal law. Note that the
weights are updated sequentially as follows:

w
(i)
t = w

(i)
t−1

p(X
(i)
t |X

(i)
t−1)p(Zt|X(i)

t )

q(X
(i)
t |X

(i)
t−1,Zt)

. (13)

To prevent degeneracy, the particles are usually resam-
pled on a regular basis according to (12). If the formalism
presented in this section appears to be classic, do note that the
major difficulty lies in computing the simulation law which is
an approximation of the so-called optimal proposal distribu-
tion p(Xt|Xt−1,Zt) [6] that takes into account the measure-
ment at the current time instant. In this way, the particles are
generated in regions of the state space corresponding to a high
likelihood. It is of the utmost importance due to uncertainty
on the value of φt(k) after a variance jump.

4.2. Simulation laws design

Using Bayes’ rule and taking advantage of the independencies
between random variables we can write the following factor-
ization for the optimal simulation law:

p(Xt|Xt−1,Zt) = p(φt|xt,φt−1, ct, ct−1,Zt)

× p(bt|ct,bt−1)p(xt|xt−1, ct, ct−1,φt−1,Zt)

× p(ct|xt−1,φt−1, ct−1,bt−1,Zt)

(14)

Its computation requires substantial developments which are
not detailed in this paper for lack of space. However, the ex-
pression of an approximation of this simulation law is given
in this section. More precisely, this latter is based on a lin-
earization of the observation equation and takes advantage of
the conjugation properties of the selected prior densities.
A) The simulation law for ct can be expressed as follows:

p(ct|xt−1,φt−1, ct−1,bt−1,Zt)

= exp
(1

2
cTt (Rb + Wt)ct − bTt−1ct

)
×

nt∏
k=1

[
δ−1(ct(k))a−1,t(k) + δ1(ct(k))a1,t(k)

] (15)

with δa the Dirac impulse function centered around a and
a1,t(k) and a−1,t(k) two terms incoming from the compu-
tations that directly depends on Zt.
B) The simulation law for xt is the following:

p(xt|xt−1, ct, ct−1,φt−1,Zt) = N (xt;µx,Σx) (16)
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Table 1. percentage of time the measurement states are correctly
estimated

satellite 1 2 3 4 5 6
without BM (%) 65.3 70.2 86.2 84.6 86.1 84.2

with BM (%) 69.7 73.1 86.6 85.3 85.2 85

where the parameters µx and Σx take different expressions
depending on ct.
C) The simulation law for bt is Gaussian:

p(bt|ct,bt−1) = N (bt;µ
′

b,Σ
′

b) (17)

where Σ
′

b = Rb = σ2
b Int and µ

′

b = Rbct + bt−1.
D) Finally, the simulation law for φt is as follows:

p(φt|xt,φt−1, ct, ct−1,Zt) =

nt∏
k=1

IG(φt(k); ε(k)) (18)

where ε(k) is a vector whose components depend on whether
the GPS measurements at time instant t are affected by mul-
tipath or not.

5. SIMULATION RESULTS
Our algorithm is tested on simulated GPS data corresponding
to a nearly constant velocity trajectory of 200 s in an urban
environment. The receiver has 6 satellites in view during the
whole trajectory. The satellite measurements are generated
by a routine of our own where GPS almanac data are used
to compute the satellite positions. To simulate the multipath
appearance, a white Gaussian noise is added on the measure-
ments from the two angularly closest couples of satellites.
This happens for the couple (1,4) (respectively (2,6)) in
the temporal intervals [10,80]s, [100,140]s and [160,190]s
(respectively [20,90]s, [110,150]s and [170,200]s). The
standard-deviation of the multipath error is chosen equal to
20 m for satellites 1 and 2, 80 m for satellite 4 and 40 m for
satellite 6.
To show the relevance of taking into account the spatial de-
pendencies, we run our algorithm with the entries of Wt

either set as in (8) or set to zero. In both cases, N = 1000
particles are used. Multipath are considered detected when
the a posteriori probability Pr[ct(k) = 1|Z1:t] becomes
greater than 0.5. Fig. 4 shows, for 3 distinct satellites, this
probability averaged on 50 realizations of simulated mea-
surement noise. We observe that the presence of multipath
is correctly detected and table 1 shows that using the BM
improves the percentage of good detections.
Fig. 5 shows the evolution of the square root of the horizontal
estimation mean-square error (RMSE) associated with both
tested algorithms. It should be noted that the BM helps de-
tecting multipath of small amplitudes, hence the impact on
the positioning error is not significant.

6. CONCLUSION

Our main motivation was to study the relevance of the BM to
define dependencies between GPS satellite measurements for

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

time (seconds)

p
ro

b
a
b
ili

ty

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

time (seconds)

p
ro

b
a
b
ili

ty

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

time (seconds)

p
ro

b
a
b
ili

ty

(c)

(b)

(a)

Fig. 4. Probability Pr[ct(k) = 1|Z1:t] for (a) satellite 3, (b)
satellite 2 and (c) satellite 4 for the algorithm with BM.
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Fig. 5. Evolution of the RMSE for the algorithm with Wt = 0
(dashed curve) and with Wt 6= 0 (plain curve)

positioning in an urban environment. A fully Bayesian hier-
archical model was proposed. The latter automatically adapts
to the varying multipath environment with few parameters to
be tuned by the practitioner. Furthermore, we are currently
working on the development of a procedure to adjust on-line
the entries of the interaction matrix from the measurements
gathered by the GPS receiver.
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