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ABSTRACT

Perfect phase-quantized unimodular sequences with entries

in {x ∈ C | xm = 1} have optimal peak-to-average-power

ratio (PAR); however, they are extremely rare. For active

sensing or communication systems which are able to tolerate

sub-optimal PAR values, we show how to construct phase-

quantized sequences possessing both virtually perfect peri-

odic autocorrelation and low PAR. Numerical examples are

provided to illustrate the performance of the proposed meth-

ods.

Index Terms— Periodic autocorrelation, Perfect sequences,

Phase-quantized sequences, Peak-to-average-power ratio

(PAR).

1. INTRODUCTION

Let x = {xl}
n−1
l=0 be a sequence in the complex field. The

periodic autocorrelation of x is defined as

Ru =

n−1∑

l=0

xlx
∗
l+u, 0 ≤ u < n (1)

where the indices are used in a periodic manner (i.e. mod n).

The design of sequences with good correlation properties is

usually considered when small out-of-phase (i.e. u 6= 0) au-

tocorrelation lags are required. Several metrics are defined

to measure the goodness of such sequences, namely the inte-

grated sidelobe level ISL ,
∑n−1
u=1 |Ru|

2and the peak side-

lobe level PSL , max{|Ru|}
n−1
u=1.

The sequence x is called perfect iff

Ru =

{
E u ≡ 0 (mod n),
0 otherwise

(2)

where E represents the energy of the sequence. Perfect se-

quences are of interest in active sensing and communication

applications [1][2]. In particular, perfect unimodular se-

quences (where xl = ejφl for all l) are of special interest
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because of their optimal (i.e. unity) peak-to-average-power

ratio (PAR). The PAR metric is defined as

PAR ,
maxl |xl|

2

1
n

∑n−1
l=0 |xl|

2
. (3)

It is known (e.g., see [3]) that there exists an infinite number

of independent perfect unimodular sequences for lengths n

containing a squared factor (i.e. there is an integer q > 1 such

that q2|n) and finitely many such sequences for square-free

lengths n.

Due to implementation issues, it is usually desirable that

the entries of the sequence are from a finite alphabet (and par-

ticularly small alphabet sizes). As a result, phase-quantized

unimodular sequences (where xl = ej
2π
m
kl for 0 ≤ kl ≤

m − 1) have been considered and studied in the literature.

Perfect phase-quantized unimodular sequences are typically

obtained by analytical construction methods such as Zadoff,

Chu, Golomb, P1-4 and Px [3][4]. However, in contrast to

unimodular sequences, such sequences are rare; moreover,

there exists a very restricted set of alphabet sizes (m) for

which it is possible to construct a perfect phase-quantized

unimodular sequence of given length [4][5]. On the other

hand, we note that in many practical applications some sub-

optimality in PAR is tolerable. This practical convenience can

be exploited to trade-off the optimal PAR for improved cor-

relation properties. In particular, it could be interesting if one

can design virtually perfect phase-quantized sequences with

tolerable PAR values. This goal can be achieved by: (i) choos-

ing a suitable set of quantized-phase values, and (ii) letting the

absolute value of the entries of the sequence to slightly vary

from one (in the sequel, the sequence energy is assumed to be

equal to its length n).

In this paper, two different approaches are proposed that

can be used to design perfect phase-quantized sequences with

low PAR. The key contributions of the proposed methods are:

(i) they allow small alphabet sizes 2 ≤ m ≪ n, (ii) they do

not restrict the length or alphabet sizes (in contrast to almost

all perfect sequence construction methods), and (iii) they pro-

vide many phase-quantized sequences therefore circumvent-

ing the rareness dilemma of perfect phase-quantized unimod-

ular sequences. Note that the availability of many perfect
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phase-quantized sequences is useful for communication or

sensing systems working in hostile environments which need

hard-to-infer sequences in order to avoid detection or jam-

ming.

The rest of this paper is organized as follows. Section 2

describes the phase selection procedure. Section 3 introduces

an extension of the PECAN method in [6] that can be used

to construct phase-quantized sequences with low PAR. The

design of such sequences is also discussed in Section 4 using

a new alternating projection scheme. Numerical examples are

provided in Section 5. Finally, Section 6 concludes the paper.

Notation: 1 and 0 are the all-one and all-zero vec-

tors/matrices. The symbol⊗ stands for the Kronecker product

of matrices. ‖x‖n or the ln-norm of the vector/sequence x

is defined as (
∑

k |xk|
n)

1
n where {xk} are the entries of x.

The Frobenius norm of a matrix X (denoted by ‖X‖F ) is

equal to
(
∑

k,l |[X]k,l|
2
) 1

2

. For the two matrices X and Y ,

we have X ≥ Y if and only if each entry of X is greater

than or equal to the corresponding entry in Y . vec(X) is a

vector obtained by stacking the columns of X successively.

Finally, for any real number x, the function [x] yields the

closest integer to x (the largest is chosen when this integer is

not unique).

2. PHASE SELECTION

A phase-quantized sequence is of the form x = {αl e
j 2π

m
kl}n−1l=0

where 0 ≤ kl ≤ m − 1 and {αl} are non-negative real num-

bers. Without loss of generality, we can assume that the

sequence energy is equal to its length:

‖x‖22 =
n−1∑

l=0

α2l = n. (4)

In this case, the PAR can be written as

PAR = max{α2l }
n−1
l=0 . (5)

Clearly, the PAR metric attains lower values when α = {αl}
is closer to 1 (in the sense of l∞-norm).

In order to construct x, all {αl} and {kl} must be spec-

ified. Given the sequence {kl}, in the following sections we

introduce iterative methods that starting from the sequence

x = {ej
2π
m
kl}n−1l=0 (which has PAR = 1) improve the pe-

riodic correlation properties at the expense of an increased

PAR. The task of choosing suitable integer phases {kl} is cru-

cial; we need to select {kl} such that they facilitate finding α

as close to 1 as possible. To this end, let xu = {ejφl}n−1l=0 be

a perfect unimodular sequence. Such sequences can be easily

generated using the PECAN method of [6]. We consider the

m-level phase-quantized version of xu by choosing

kl ≡

[

m

(
φl

2π

)]

(mod m) (6)

In the following sections, we discuss the design of α for

the integer phases {kl} given by (6).

3. PECAN FOR LOW-PAR PHASE-QUANTIZED

SEQUENCE DESIGN

In [6] an iterative method called PECAN is devised to de-

sign perfect unimodular sequences of arbitrary length. In this

section, an extension of this algorithm is discussed that can

be used for designing perfect low-PAR phase-quantized se-

quences. For a unimodular sequence {xl} (with |xl| = 1),

the PECAN algorithm minimizes the criterion (see [6])

C =
n−1∑

l=0

|Xl − e
jψl |2 (7)

where {Xl} denotes the discrete Fourier transform (DFT) of

{xl}:

Xl =

n−1∑

k=0

xke
−j2π kl

n (8)

and {ψl} are arbitrary phase values in [0, 2π). In each itera-

tion, the algorithm performs a cyclic minimization as follows:

for given {xl} (and hence given {Xl}), the minimizing {ψl}
are simply given by

ψl = arg(Xl), 0 ≤ l < n, (9)

whereas for given {ψl} the minimizing {xl} are given by

xl = ej arg(zl), 0 ≤ l < n (10)

where {zl} represents the Inverse DFT of {ejψl}:

zl =
1

n

n−1∑

k=0

ejψkej2π
kl

n . (11)

To propose an extension of the PECAN algorithm, we as-

sume that the absolute values of the entries of the sequence

belong to the interval [1− ε1, 1 + ε2] where 1 ≥ ε1 ≥ 0 and

ε2 ≥ 0. Note that PAR is a global metric. In some applica-

tions a local alternative to the optimization of the PAR metric

is more important. The above limitation on the absolute val-

ues of the entries of the sequences plays such a role.

Similar to the previous derivations of the PECAN, the

minimizing {ψl} are given by Eq. (9). However, the min-

imizing {xl} are obtained in a slightly different way. Let

xl = αle
j 2π

m
kl be the lth entry of x. The minimizing xl can

be obtained independently of the other entries of the sequence

by solving the minimization problem

min
αl,kl

|αle
j 2π

m
kl − zl| (12)

s.t. αl ∈ [1− ε1, 1 + ε2],

kl ∈ {0, 1, · · · ,m− 1}.
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Table 1. The Extended PECAN for Designing Perfect Low-

PAR Phase-Quantized Sequences

Step 0 (Initialization): Generate a perfect unimodular sequence and con-

sider the m-level phase-quantized version of it.

Step 1: Compute {ψl} using Eq. (9).

Step 2: Compute {αl} using Eq. (14).

Step 3: Repeat the cyclic minimization steps 1 and 2 until a stop criterion

is satisfied, e.g. the absolute change of any specific entry of {αl} in

successive iterations is less than a given ǫ > 0, or the obtained PAR has

reached the maximum tolerable value.

For fixed {kl} obtained by (6), the optimal αl ∈ [1−ε1, 1+ε2]
is given by the minimizer of the function:

∣
∣
∣
∣
αl − |zl| cos

(

arg(zl)−
2π

m
kl

)∣
∣
∣
∣

(13)

Let βl = |zl| cos
(
arg(zl)−

2π
m
kl
)
, 0 ≤ l < n. Then the

minimizing {αl} are given by

αl =







βl, βl ∈ [1− ε1, 1 + ε2]
1 + ε2, βl > 1 + ε2
1− ε1, βl < 1− ε1.

(14)

Remark: It is worth mentioning that the function in (13) can

be minimized with respect to {kl} as well. However, due to

the multi-modal structure of the loss function in (7), the per-

formance does not necessarily improve. We also note that

based on the discussions in Section 2, {kl} is initialized such

that it provides a generally good compromise between virtu-

ally perfect correlation properties and an increased PAR. �

The proposed extended PECAN for designing low-PAR

phase-quantized sequences is summarized in Table 1. It is in-

teresting to note that while the criterion (7) is quadratic, it ef-

fectively minimizes the harder-to-optimize ISL metric which

is quartic in {xl} [6]. The extended PECAN algorithm can

also be considered for cases in which no entry of the sequence

is limited in absolute value. Interestingly, the latter scenario

is only a special case of the extension described above corre-

sponding to ε1 = 1 and ε2 =∞.

4. ALTERNATING PROJECTIONS

The periodic autocorrelation lags of x = {αl e
j 2π

m
kl}n−1l=0 are

given by

Ru =

n−1∑

l=0

αlαl+u e
j 2π

m
(kl−kl+u), 0 ≤ u < n (15)

where the indices are used in a periodic manner. As discussed

in the Introduction, x is perfect iff all its out-of-phase auto-

correlation lags are equal to zero. Note that because the se-

quence {kl − kl+u}
n−1
l=0 is given, Eq. (15) can be written as

Ru = e
T
au in which e =

(

1 ej
2π
m
(1) · · · ej

2π
m
(m−1)

)T

,

au = P u








α0αu mod n
α1α(1+u) mod n

...

αn−1α(n−1+u) mod n








(16)

and P u is a binary selection matrix whose [P u]r+1,s+1 entry

is equal to one iff (ks − k(s+u) mod n) mod m = r, and is

zero otherwise. By combining (16) for all out-of-phase lags

1 ≤ u < n, we obtain







P
′
1

P
′
2

...

P
′
n−1








︸ ︷︷ ︸

P

vec(αα
T ) =








a1

a2

...

an−1








︸ ︷︷ ︸

a

(17)

where {P ′u} is constructed from {P u} such that it selects the

correct indices of {αlα(l+u) mod n} in vec(αα
T ). To give a

more precise definition of {P ′u}, note that {αlα(l+u) mod n}

appears in the (n((l + u) mod n) + l + 1)th position of

vec(αα
T ). This implies that [P ′u]r+1,(n((s+u) mod n)+s+1)

is equal to one iff (ks − k(s+u) mod n) mod m = r and is

zero otherwise.

We conclude from (17) that to obtain a perfect sequence

x we need α ≥ 0 such that

(In−1 ⊗ e)TP vec(αα
T ) = (In−1 ⊗ e)Ta

= 0(n−1)×1. (18)

To solve this problem, we consider the alternating projections

on the two sets

Γ =
{
A ∈ (R+ ∪ {0})

n×n | (19)

(In−1 ⊗ e)TP vec(A) = 0(n−1)×1

}

and Λ =
{
A ∈ R

n×n |A = αα
T , ‖α‖22 = n, α ≥ 0

}
.

Note that while Γ is convex, Λ is a non-convex set which may

lead the alternating projections to different solutions depend-

ing on initialization. In order to find the optimal projection of

A ∈ R
n×n on Γ, we consider the problem:

min
A⊥∈Γ

‖A−A⊥‖
2
F (20)

Let us define the difference matrix Aδ = A − A⊥. As a

result,

(In−1 ⊗ e)TP vec(Aδ) = (In−1 ⊗ e)TP vec(A)

, c(n−1)×1. (21)

Therefore, (20) is equivalent to

min
Aδ≤A

‖vec(Aδ)‖
2
2 (22)

s.t. (In−1 ⊗ e)TP vec(Aδ) = c.
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Table 2. The Proposed Alternating Projections

Step 0 (Initialization): Generate a perfect unimodular sequence and con-

sider the m-level phase-quantized version of it.

Step 1: Compute the optimal projection on Γ by solving (22).

Step 2: Compute the optimal projection on Λ using (24).

Step 3: Repeat the projections in steps 1 and 2 until a stop criterion is

satisfied, e.g. the distance between the two sets is less than a given ǫ > 0

or the obtained PAR has reached the maximum tolerable value.

The latter optimization problem is a linearly constrained least

squares problem which can be solved using standard solvers

such as CVX or YALMIP [7].

Next, let α (with ‖α‖22 = n) be the normalized dominant

eigenvector of A. Interestingly, the matrices in Γ are non-

negative and therefore have non-negative dominant eigenvec-

tors according to the Perron-Frobenius theorem. As a result,

the optimal solution A⊥ to the problem

min
A⊥∈Λ

‖A−A⊥‖
2
F (23)

is given by

A⊥ = αα
T . (24)

The proposed alternating projection algorithm can be summa-

rized as in Table 2.

We end this section commenting on the integrated side-

lobe level (ISL) of the sequences obtained by the proposed

alternating projections. At the sth iteration of the method, the

ISL metric can be rewritten as

ISL(s) =

n−1∑

u=1

∣
∣
∣R

(s)
u

∣
∣
∣

2

=

n−1∑

u=1

∣
∣
∣e
T
a
(s)
u

∣
∣
∣

2

=

n−1∑

u=1

∣
∣
∣e
T (a(s)u − a

⊥ (s)
u )

∣
∣
∣

2

(25)

where {a
(s)
u } is defined as in (16) and









a
⊥ (s)
1

a
⊥ (s)
2

...

a
⊥ (s)
n−1









= a
⊥ (s) = P vec(A

(s)
⊥ ), A

(s)
⊥ ∈ Γ. (26)

Using the Cauchy-Schwarz inequality we obtain

ISL(s) ≤ m

(

n−1
∑

u=1

‖a(s)u − a
⊥ (s)
u ‖22

)

(27)

= m‖a(s) − a
⊥ (s)‖22.

The latter inequality implies that, in each iteration, the ISL of

the resultant sequence is bounded by the distance between the

obtained points in the two sets, and thus finding the intersec-

tion of the two sets leads to an ISL value of zero.

5. NUMERICAL EXAMPLES

In order to illustrate the performance of the newly proposed

alternating projection method, we show an example of design-

ing a low-PAR phase-quantized sequence of length n = 64
and alphabet size m = 2 (i.e. the binary alphabet) in Fig. 1.

We used the PECAN method to construct a phase-quantized

unimodular sequence for initialization. The autocorrelation

levels are normalized and expressed in dB:

autocorrelation (dB) = 20 log10

∣

∣

∣

∣

Ru

R0

∣

∣

∣

∣

(28)

Although the binary alphabet is most constrained, the ob-

tained sequence achieves virtually perfect periodic correla-

tions and PAR = 2.138. Fig. 1 (c) exhibits an example of the

typical increasing/decreasing behavior of PAR/autocorrelation

PSL of the obtained sequences vs. iteration number. This be-

havior makes it possible to stop the algorithms when the

desirable PSL or the maximal tolerable PAR is achieved.
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Fig. 1. Design of a phase-quantized sequence of length

n = 64 with low PAR via the alternating projection method.

The phase quantization level is m = 2. (a) the sequence am-

plitudes {αl} and integer phases {kl}. (b) the autocorrelation

levels (in dB) of the obtained sequence. (c) the PSL and PAR

vs. the iteration number for the obtained sequence. The se-

quence achieves practically perfect periodic correlation prop-

erties and PAR = 2.138.
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H
H
H
H

n

m
2 4 8 16 32 64

1.842 1.386 1.085 1.085 1.022 1.022

10 1.842 1.250 1.250 1.022 1.022 1.022

1.842 1.842 1.085 1.022 1.022 1.022

1.904 1.904 1.904 1.895 1.290 1.104

25 1.992 1.992 1.992 1.610 1.289 1.245

1.960 1.960 1.960 1.717 1.447 1.142

1.999 1.999 1.999 1.999 1.507 1.382

50 1.999 1.999 1.999 1.999 1.655 1.350

2.250 2.250 2.250 2.250 1.600 1.290

2.907 2.748 2.739 2.739 2.324 1.878

100 3.095 3.095 3.095 2.097 2.027 1.515

2.250 2.250 2.250 2.250 1.844 1.444

Table 3. The lowest PAR values obtained for different lengths

(n) and alphabet sizes (m) by running the two proposed meth-

ods 50 times; alternating projections (see the first row for each

length) and the extended PECAN method with ε1 = 1 and

ε2 = ∞ (see the second row for each length). The third row

for each length presents the results of running the extended

PECAN method 10 times for the same values of (n,m) and

ε1 = ε2 = ε ∈ {0, 0.05, 0.1, 0.15, 0.3, 0.4, 0.5, 0.7, 0.9}. For

each length/alphabet size, the bold font is used to indicate the

lowest obtained PAR using the proposed methods.

Next, we consider the lengths n ∈ {10, 25, 50, 100} and

alphabet sizes m ∈ {2, 4, 8, 16, 32, 64}. As the sequence de-

sign problems are usually performed off-line, we have run the

proposed alternating projections and the extended PECAN

method in Section 3 (with ε1 = 1 and ε2 = ∞) 50 times

and have chosen the sequence with the best PAR. We also

present results obtained by the extended PECAN when the

absolute values of the entries of the sequences are limited.

We have run the extension of the PECAN method 10 times

for the same set of lengths and alphabet sizes as above, ε1 =
ε2 = ε ∈ {0, 0.05, 0.1, 0.15, 0.3, 0.4, 0.5, 0.7, 0.9} and have

selected the sequence with the best PAR. In all cases, we

stopped the algorithms when PSL values less than 10−10 were

achieved. The results are shown in Table 3. Note that the

difficult optimization problems considered in this paper have

many local optima and as a result, different optimization paths

can be chosen in the search space. On the other hand, higher

values of ε enlarge the constraint set and thus it is possible

that we achieve lower PAR values for higher ε.

6. CONCLUDING REMARKS

Computational methods have been proposed to tackle the

problem of designing perfect phase-quantized sequences with

low PAR. It is important to note that:

• The PECAN algorithm in [6] can be used to design

many perfect unimodular sequences for any length n.

However, these sequences have infinite-alphabet. In

some applications, finite-alphabet or phase-quantized

perfect sequences are required.

• Perfect phase-quantized unimodular sequences can be

obtained using analytical construction methods. How-

ever, these sequences are rare and do not exist for arbi-

trary alphabet sizes.

• Quantized PECAN sequences (as described in Eq. (6))

are phase-quantized and unimodular but not perfect.

The key idea proposed in this paper is as follows. We obtain

a quantized PECAN sequence and fix its phase values. We

propose polynomial-time algorithms (namely an extension of

the PECAN method and an alternating projection scheme)

to trade-off PAR for perfect periodic correlation properties.

With such a compromise, we can obtain many perfect phase-

quantized sequences for any arbitrary length and alphabet

size; yet the PAR larger than 1. These sequences are of in-

terest for applications in which sub-optimal PAR values are

tolerable. Numerical examples are provided to examine the

performance of the proposed methods.
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