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ABSTRACT

The task of associating a semantic class to the objects present
in an image is challenging because this problem involves the
joint segmentation and recognition of the objects. In this
work, we use a recent approach embedding several optimiza-
tion algorithms into a common framework named Power wa-
tershed to perform this task. We show how the fast water-
shed algorithm can be used to minimize an energy function
for which the minimizer corresponds to the desired object
class segmentation. Higher order potentials are then added to
improve label consistency. We also demonstrate that the ran-
dom walker algorithm can be successfully applied to semantic
class segmentation problems. Comparisons with the Graph
Cuts algorithm show that the proposed approaches yield bet-
ter segmentation results, obtained up to twelve times faster on
a very challenging indoor scenes dataset.

Index Terms— Image processing, Object class segmenta-
tion, Graph-based optimization, Graph cuts, Random walker,
Watershed.

1. INTRODUCTION

The purpose of object class segmentation is to label each pixel
of a scene with the category of the object of which it belongs.
A popular approach for this problem is the use of Markov
Random Fields or Conditional Random Fields [1, 2, 3, 4, 5].
To define appropriate weights on the graphical models then
created, we have nowadays the opportunity to use additional
information than simply the images themselves. For example,
the work of [6] proposes to use depth information extracted
from the kinect device, to refine object class segmentation
using Graph Cuts [7, 8]. The expression of the object class
segmentation problem in an energy formulation is very useful
to the use of additional extensions exploiting different infor-
mation.

For example, [9] showed how to minimize energies with
high order cliques using graph cuts, leading to a better en-
forcement of label consistency inside objects for object recog-
nition [10], and the addition of co-occurrence statistics [11].
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However, there are several drawbacks when using graph
cuts, such as long computation times, block artifacts, and the
fact that Graph Cuts only lead to local minima when the num-
ber of labels is larger than two.

In this paper, we propose alternative optimization meth-
ods as efficient energy minimizers for object class segmen-
tation. Recently, Couprie et al. introduced the Power wa-
tershed method [12], which is related to the Graph cuts [7],
Watershed [13], and Random walker [14] methods for image
segmentation. Although this technique was introduced in the
context of image segmentation, the authors described how the
method could be used as an optimization method for various
functionals, such as image filtering [15], and surface recon-
struction [16]. In the present work we show that the Power
watershed method is well-suited to address the object class
segmentation problem, and present a successful way to deal
with higher order energy terms.

2. REPRESENTATION OF ENERGY FUNCTIONS
WITH GRAPHS

Since the Power watershed is defined on a graph, we begin
by casting the semantic segmentation problem formulation in
discrete terms. A graph consists of a pair G = (V,E) with
vertices v ∈ V and edges e ∈ E ⊆ V × V with cardinalities
n = |V | and m = |E|. An edge, e, spanning two vertices, vi

and vj , is denoted by eij . The goal of this work being to label
all the vertices of G, given some vertices of known labels, we
split V in two disjoints sets of vertices, noted Vk and Vu, and
containing the vertices of known and unknown labels respec-
tively. A weighted graph assigns a (typically non-negative
and real) value to each edge called a weight. The weight of
an edge eij is denoted by wij . We denote by |S| the cardi-
nality of a set S.

2.1. Power Watersheds

The generalized Power Watershed energy is given by

arg min
x

∑
eij∈E,

(vi,vj)∈Vu×Vu

wij
p|xi−xj |q+

∑
eij∈E,

vi∈Vu,vj∈Vk

wij
p|xi−yj |q

(1)
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where y represents a measured configuration and x represents
the target configuration. In the first term of this equation,
wij can be interpreted as a weight on the gradient of the tar-
get configuration, such that the first term penalizes any un-
wanted high-frequency content in x and essentially forces x to
vary smoothly within an object, while allowing large changes
across the object boundaries. The second term enforces fi-
delity of x to a specified configuration y, wij being weights
enforcing that fidelity (See Fig. 1(a)).

The different values of the real numbers p and q lead
to different algorithms for optimizing the energy. When the
power of the weight, p, is finite, and the exponent q = 1, Eq.
(1) leads to a binary solution x, that can be deduced using net-
work flow techniques, also known as Graph cuts [8]. When
q = 2, the unique solution to Eq. (1) may be obtained by solv-
ing a linear system of equation, the corresponding algorithm
for image segmentation being known as the Random walker
[14]. As described in [12], when the exponent p tends to-
ward infinity, the cut obtained when minimizing the energy is
a watershed cut [17], which has been shown to be equivalent
to Maximum Spanning Forests [17] (MSF). Furthermore, [12]
presents an algorithm – called Power watershed – to compute
the unique watershed that optimizes the energy for q = 2 and
p→∞.

2.2. Multi-class segmentation using Power watersheds

For the problem of multi-region segmentation, where the
number of different regions L is larger than two, the energy
expressed in (1) has to be written under a different form. We
suppose that we have a set of known labels noted y1, ..., y|Vk|
taking their values between 1 and L. The problem is to find
a labeling s defined as the argument maximum of L pairwise
labellings x(1), x(2), ..., x(L) given by

arg min
x=[x(1),x(2),...,x(L)]

L∑
l=1

 ∑
eij∈E,

(vi,vj)∈Vu×Vu

wij
p|x(l)

i − x
(l)
j |

q

+
∑

eij∈E,
vi∈Vu,vj∈Vk

wij
p|x(l)

i − y
(l)
j |

q


(2)

where ∀vi ∈ Vk, ∀l ∈ 1, ..., L, y(l)
i =

{
1 if yi = l,
0 otherwise. The

final labeling s is given, for every vi ∈ Vu, by

si = arg max
(
x

(1)
i , ..., x

(L)
i

)
. (3)

Property 1. If q = 2, the optimal solution x∗ of (2) satisfies
∀vi ∈ Vu, x(1)

i + x
(2)
i + ...+ x

(L)
i = 1.

As explained in [14], the solution to the combinatorial
Dirichlet problem minx

∑
eij∈E wij(xi − xj)2, subject to

boundary conditions – some values of x enforced to be 0 or 1
– corresponds to the probability of a random walker reaching
vertices marked to 1 before vertices marked 0. As probabil-
ities, they sum to one. In the rest of this paper, the Random
walker algorithm solves (2) with q = 2 and p = 1, and the
Power watershed algorithm solves (2) with with q = 2 and
p→∞.

2.3. Multi-class segmentation using higher order poten-
tials

In the particular case where all weights are different, and
p → ∞, the labeling x produced by the Power watershed al-
gorithm is binary [18]. The algorithm corresponds in this case
to a simple maximum spanning forest computation [17]. We
explore this particular case in this section in order to optimize
a more general function.

Following the work of [10], we can enforce global con-
sistency by introducing higher-order potentials to the energy
function. Each clique c corresponds in practice to a set of
nodes {vc1 , vc2 , ..., vc|c|} of a super-pixel extracted from an
over-segmentation of the image. The set of cliques is denoted
in what follows by S.

y

x

(a) Graph with pairwise and
unary weights

(b) Additional Higher
Order Cliques

Fig. 1. Graph built. (a): The set of grey nodes represent Vu,
to which labels x are going to be associated. The set of black
nodes represents Vk, for which known values y are given. The
red edges represent the pairwise edges (first term of (2)), the
green edges represent unary edges (second term of (2)). (b):
An example of graph construction for higher order potential
enforcement. Three groupings of nodes are given. All nodes
inside these groupings are connected to an additional clique
node (in blue) by additional blue edges.

Consequently, the labeling s of (3) may be obtained di-
rectly by solving

arg min
s

X
eij∈E,

vi∈Vu,vj∈Vk

ψ(si, yj)+
X

eij∈E,

(vi,vj)∈Vu×Vu

ϕ(si, sj)+
X
c∈S

φ(sc),

(4)
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where

ϕ(si, sj) = 1(si 6= sj)w
p
ij ,

ψ(si, yj) = 1(si 6= yj)w
p
ij , (5)

φ(sc) = 1(∃(vi, vj) ∈ c× c such that si 6= sj)wp
c .

We need to define additional nodes and edges to the orig-
inal graph G in order to solve the new problem (4). Let Vh

be a set of additional nodes, each node vc of Vh is associated
with one clique c. Let Eh be a set of |Vu| additional edges,
each edge eic ofEh links a node of Vu to a node of Vh and has
a weight initialized to wic (See Figure 1 for an illustration).
The algorithm for solving (4) is given in Algorithm 1.

Algorithm 1: Maximum Spanning Forest algorithm for
the optimization of the energy (4) with higher order po-
tentials and p→∞

Data: A weighted graph G(V,E), where
V = Vu ∪ Vk ∪ Vh, and E = Eu ∪ Ek ∪ Eh.
Nodes of Vu and Vh have unknown potentials
initially.

Result: A labeling s associating a label to each vertex.
Sort the edges of E by decreasing order of weight.
while any node has an unknown potential do

Find the edge eij in E of maximal weight;
if vi or vj have unknown label values then

Merge vi and vj into a single node, such that
when the value for this merged node becomes
known, all merged nodes are assigned the same
value of s and considered known.

if vi and vj have known different label values and
eij ∈ Eh then

Set all weights of the corresponding clique to 0.

3. APPLICATION TO OBJECT CLASS
SEGMENTATION

We used for our experiments the NYU depth dataset of Sil-
berman and Fergus [6], composed of 2347 triplets of images,
depth images, and ground truth labeled images. The objects
cover twelve categories. Most datasets used for object class
segmentation present the objects centered into the images, un-
der nice lightening conditions. The NYU depth dataset aims
to develop joint segmentation and classification solutions to
an environment that we are likely to encounter in the every-
day life. This indoor dataset contains scenes of offices, stores,
rooms of houses containing many occluded objects unevenly
lightened. In this work, we are using the predictions of a clas-
sifier used in [6] and trained using the features described in
[19]. It is worth mentioning that this classifier has a very
good accuracy on the scene category database (81%) and only
poor results on the NYU dataset (53%), demonstrating the
very challenging nature of this dataset.

The NYU dataset is provided with ten possible splits of
the train and test images. We use the first split in our tests. We
realize in our experiments a comparison between the current
state-of-the-art method for performing object-class segmenta-
tion on the NYU depth dataset, that is to say the Graph cuts
method, and three algorithms: the Random Walker – to our
knowledge, applied here for the first time to semantic scene
segmentation–, Power watersheds and our Maximum Span-
ning Forest algorithm using higher order potentials.

Image Ground truth

Power watershed result higher order MSF

Fig. 2. Comparison of results obtained with Power water-
sheds and higher order MSF. The color legend is given in
Fig.3.

For the four methods, the pairwise weights correspond to
a metric inversely function of the image gradient that also
takes the depth image into account. The unary terms corre-
spond to learned appearance model from images and depth
maps. All the details about the parameters used for the unary
and pairwise weights are given in [6] (we chose the param-
eters giving the best results). The choice of higher order
cliques was motivated to enforce a local consistency in re-
gions generated by the hierarchical segmentation method of
[20]. The weights wc were set to the size of each segment,
wc = |c|, where |c| was normalized.

Results are reported in Table 1. We quantify the seg-
mentation accuracy in the results using three different stan-
dard segmentation measures used in [21] , namely Rand In-
dex (RI), Global Consistency Error (GCE), and Variation of
Information (VoI). Good segmentation results are associated
with high RI, low GCE and low VoI. The classification accu-
racy is the recognition accuracy computed from the confusion
matrix. We give two measures of classification accuracy: the
accuracy per class, given by the mean diagonal of the confu-
sion matrix, and the accuracy per pixel, computed as the ratio
of correctly classified pixels versus the total number of pixels
of the dataset.

The results in Table 1 demonstrate the superior segmen-
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Fig. 3. Results obtained with Graph cuts, Random walker and MSF with higher order potentials on the NYU depth dataset.

tation performance of the Power watershed – as well as the
Random walker and MSF employed with higher order terms
– over the graph cuts method. In terms of classification ac-
curacy, Graph Cuts are more accurate than other methods for
recognizing rare objects. However, Random Walker, followed
by MSF and Power Watershed, tend to produce better delin-
eation of objects, manage to recover the correct class in the
majority of the cases. Visually, a lack of regularization in the
Power watershed results leads to small label inconsistency ar-
tifacts, that are overcome by the higher order MSF method
(See Fig.3). Examples of results are presented in Fig. 3.

In terms of computation times, the Power watershed
method is six times faster than the graph cut method. Both
methods were implemented on CPU in C, using Matlab inter-
faces. We used for our tests a standard PC with a processor
Intel Core i3-2100 CPU at 3.10GHz. Segmenting a 640×480
image using Graph Cuts takes in average more than 5 sec-
onds, and less than one second using Power watershed. The
MSF with higher order terms is the fastest algorithm, because
no pass for locating area of same weights is necessary. One
could argue that it requires an additional pass for computing a
super pixels segmentation, but this step – that takes less than

one second – is necessary to all methods as detailed in [6].

4. CONCLUSION

In this work we introduced a novel core of methods for ob-
ject class segmentation, bringing several breakthroughs to this
problem: we showed how a greedy procedure can optimize
exactly a meaningful multi-label energy defined in a graph,
that model the problem in an appropriate way. In particu-
lar, the higher order potential employed here allow us to en-
force labels consistency accurately. The speed of this water-
shed based procedure is more than ten times faster than the
classical graph cut method used in this context. Although
Graph Cuts are more accurate to recognize objects belong-
ing to classes that are under-represented in the dataset used in
this work, the results obtained with the proposed approaches
reach a better classification and segmentation accuracy. Fu-
ture work will aim to improve the current system by enforc-
ing co-occurrence statistics and building hierarchical schemes
[22, 23].
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Graph Rand. Pow. High. ord.
Cuts Walk. Wat. MSF

Se
gm

en
ta

tio
n Mean RI 57.3 66.0 66.2 66.0

Median RI 59.4 67.0 67.3 66.5
Std. dev. RI 9.1 13.8 13.2 13.8
Mean GCE 0.48 0.35 0.36 0.36
Mean VoI 3.1 2.4 2.5 2.5

C
la

ss
if

.

Per class 56.4 45.4 47.8 46.5
Per pixels 46.2 56.2 53.1 53.7
Time (s) 5.11 4.7 0.85 0.4

Table 1. Segmentation, classification accuracy, and compu-
tation times. Mean accuracy computed between the segmen-
tation/classification masks and the ground truth images from
the NYU depth database. See the text for more details.
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