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ABSTRACT 

Subdivision-based wavelet coding techniques yield state-of-
the-art performance in scalable compression of semi-regular 
meshes. However, all these codecs make use of the L-2 
distortion metric, which gives only a good approximation of 
the global error produced by lossy coding of the wavelet 
coefficients. The L-infinite metric has been proven to be a 
suitable metric for applications where controlling the local, 
maximum error on each vertex is of critical importance. In 
this context, an upper bound formulation for the L-infinite 
distortion for a wavelet-based coding scheme operating on 
semi-regular meshes is derived. In addition, we propose a 
rate-distortion optimization algorithm that minimizes the 
rate for any target L-infinite distortion. It is shown that our 
L-infinite coding system outperforms the state-of-the-art and 
that an L-2 driven coding approach for semi-regular meshes 
loses ground to its L-infinite driven version when the goal is 
to have a tight control on the local reconstruction error.1 

Index Terms— L-infinite coding, semi-regular mesh 
compression, subdivision-based wavelets. 

1. INTRODUCTION 

Polygonal mesh representations have evolved from the 
relatively low resolution ones common in the early years of 
the last decade to virtual objects consisting of millions of 
vertices that better fit the new age of high-definition 
graphics and fast microprocessors. The list of domains that 
make use of mesh representations is quite extensive. One 
can start with the popular gaming industry and continue 
with medical imaging, coding of topographic landscapes, 
mesh geometry watermarking or 3D CAD. 

Regardless of the application environment, handling 
such highly detailed 3D objects imposes considerable 
demands in storage, transmission, computational and display 
resources. Scalable mesh coding techniques are therefore  
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particularly important when the aim is to provide a quality 
and resolution-scalable representation of the 3D object as 
well as region-of-interest coding and client-view adaptation. 
This allows for coding, transmitting and rendering such 
meshes on a broad range of end-user terminals, transmission 
environments and computational capabilities. 

The literature provides several scalable wavelet-based 
mesh coding technologies that satisfy these requirements. 
Among them is our MeshGrid representation method [1], 
which employs a volumetric wavelet transform and efficient 
volumetric coding technologies. The state-of-the-art in 
scalable mesh coding systems that deploy wavelets on 
surfaces is the popular Progressive Geometry Compression 
(PGC) technique of [2], which relies on the well-known 
zerotree coding paradigm [3, 4] to encode the wavelet 
coefficients. Recently, we have designed scalable intraband 
and composite mesh coding techniques for semi-regular 
meshes [5] that outperform the PGC compression system. 

A common denominator of existing mesh coding 
techniques, including the aforementioned ones, is the choice 
of the L-2 distortion metric [6-10] which provides a good 
approximation of the global error produced by lossy coding 
of the wavelet coefficients. Though very popular, the L-2 
metric is not appropriate for applications where geometry 
accuracy is critical, such as mesh geometry watermarking, 
industrial applications (3D CAD, architectural design etc.) 
or coding of topographic surfaces. The L-infinite distortion 
overcomes this short-coming by imposing a tight bound on 
the local error.  

To our knowledge, the only existent L-infinite coding 
approach for meshes is that of MeshGrid proposed in [11], 
whereas all subdivision-based wavelet techniques, including 
those of [2] and [5], employ the L-2 distortion metric. Since 
coding techniques that deploy wavelets on surfaces have 
demonstrated a wide use in practical applications and coding 
literature, the goal of this paper is to design a coding 
methodology ensuring an L-infinite upper bound when 
employing subdivision-based wavelet coding systems. Our 
approach is based on our previously designed Scalable 
Intraband Mesh (SIM) coding system of [5], for which an 
efficient estimate for the L-infinite distortion is derived. 

The paper is structured as follows. Section 2 describes 
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the employed coding architecture. The L-infinite coding 
problem is formulated in Section 3. Section 4 describes the 
L-infinite estimator for the considered wavelet-based coding 
system, whereas Section 5 reports the experimental results 
obtained with our L-infinite coding approach. Finally, 
Section 6 draws the conclusions of our work. 

2. SYSTEM OVERVIEW 

In our work we employ our recently developed Scalable 
Intraband Mesh (SIM) coding technique [5]. The unlifted 
Butterfly [12] wavelet transform is used to construct lower 
resolution approximations of the semi-regular input mesh 

JM . Recursively applying the transform J  times generates 
a coarse approximation of the input mesh, i.e. the base mesh 

A
JS , and J  high-frequency detail subbands 1,...,j JS  . The 

SIM codec losslessly stores the base mesh A
JS  in the final 

bit-stream. Commonly though, the base mesh is stored using 
a single rate coder, for instance the TG coder [13]. The 
wavelet subbands are quantized using Successive 
Approximation Quantization (SAQ). The coding scheme 
then exploits the intraband statistical dependencies between 
the wavelet coefficients through octree decomposition and 
encoding. To improve the performance even further 
arithmetic entropy coding is adopted [5]. 

3. PROBLEM FORMULATION 

In general terms, the scalable coding system decomposes the 
input 3D mesh into J  independent sources of information 
(not including the base mesh), each of them being then 
progressively encoded. For wavelet-based coding techniques 
such as MeshGrid [1] or PGC [2], these sources correspond 
to the wavelet subbands and are encoded in a bitplane-by-
bitplane manner. The problem to be solved is determining 
the layers of information that need to be coded from each 
source such that the estimated distortion at the decoding side 
is minimized subject to a total target rate. Alternatively, one 
can impose a bound on the estimated distortion and 
minimize the required rate by optimizing the rate allocation. 

Let totD  denote the total reconstruction error in the 
spatial domain. Each source of information j , with 
1 ,j J   has a contribution jD  to the total distortion. For 
additive distortion metrics, one can express the total 
distortion in the spatial domain as a linear combination of 
distortion contributions from each source of information: 

 
1

( )
J

tot j j j
j

D w D R


   (1) 

where jR  is the rate associated with source j , and jw  are 
weights reflecting the contribution of the distortion in 
subband j , with respect to the total distortion. For 
subdivision-based wavelet coding systems, such as [2] or 
[5], these weights depend only on the wavelet transform of 

choice and on the type of distortion metric. Recall that the 
SIM codec employs the unlifted Butterfly wavelet 
transform. In this paper, we employ the L-infinite distortion. 

The L-infinite norm, defined as max i ii
V V v v


    , 

represents the MAXimum Absolute Difference (MAXAD) 
between the original position of the vertices iv V  and 
their decoded versions, iv V   [11]. We note that, in 
addition to ensuring a bound on the local error [11, 14], the 
L-infinite metric can also provide an upper bound to the 
Hausdorff distance [11], when the resolution of the original 
mesh and that of the decoded mesh are identical. 

4. SOLUTION METHODOLOGY 

In the following, we introduce an estimator for the L-infinite 
distortion in the context of our SIM coding system and 
discuss a rate-distortion optimization algorithm that 
minimizes the rate for a given MAXAD bound. 

4.1. Data-independent L-infinite estimator 

Intuitively, a quantization error produced in a certain 
wavelet subband will be translated (via wavelet synthesis) 
into a contribution to the total reconstruction error occurring 
in the spatial domain. Due to the linear nature of the 
transform, it is possible to define a linear relation that 
combines the various quantization errors produced in the 
detail subbands into corresponding errors occurring in the 
spatial domain.  

We start from the classical lifting scheme and, for one 
level of decomposition, we derive the errors on the even 
samples,

 11
(2 ) ( ) ( ) ( )A SS

m m m U m     , and on the odd 
samples

 11
(2 1) ( ) ( ) ( )A SS

m m P m m      . In line with the 
notations of Section 2, 

1
( )AS
m  and 

1
( )S m  refer to 

quantization errors in the approximation and the detail 
subband, respectively. ( )P m  and ( )U m  are the predict and 
update functions, respectively, and   denotes the 
convolution operator. One notes that the SIM codec relies 
on the unlifted Butterfly transform [12], which excludes the 
update step. Under worst-case scenario assumptions, it is 
now possible to maximize the different error-contributions 
from the different wavelet subbands, and determine the 
smallest upper-bound of the MAXAD: 

1
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7

0

sup (2 ) sup ( )

sup (2 1) ( ) sup ( ) 1 sup ( )

A

A

S

SS
i

m m

m P i m i m

 

  


 


      



(2) 

where ( )P i , 0,7i   are the coefficients of the Butterfly 
transform. Let 

1
( )AS i

K P i   and 
1SK  denote the weights 

with which the approximation and the detail subband, 
respectively, contribute to the reconstruction error. For the 
unlifted Butterfly transform 

1
1.5AS

K  , 
1

1SK   and one can 
see that sup (2 1) sup (2 )m m   , meaning that the  
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Figure 1. Actual MAXAD (as a percentage of the bounding box diagonal) versus rate (bpv) for the Dino (left) and Skull (right) 
mesh models for the (data-independent) L-2 and L-infinite driven SIM codec. 

largest reconstruction error occurs on the odd samples. 
Proceeding recursively, for a J -level decomposition we get: 
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where 1.5A
JS

K   and 1
jSK  , 1 j J  . 

The SIM codec [5] employs the classical SAQ, which is 
an embedded scalar quantizer for which the deadzone size is 
twice the size of the other quantizer bins. Let ,0j  be the 
bin-size of the quantizer at the finest quantization level 
applied on the subband ,1jS j J   and jb   be the 
number of discarded bitplanes for subband jS . One notes 
that for any jS  and jb , the dead-zone bin-size for the 
quantizer employed by SIM at level jb  is expressed as 

1
,02 jb

j
  , while the other bin-sizes are given by ,02 jb

j . 
Consequently, the maximum quantization error that can be 
introduced is half the size of the deadzone and the 
supremum of the quantization errors in subband jS  is given 
by ,02 jb

j . As mentioned in Section 2, the coarsest 
resolution approximation is never quantized. Hence, we can 
formulate the smallest upper bound totM  of the MAXAD 

totD , as: 

 1
,0

1
( ) 2 j

A
jJ

J
bj

tot tot S jS
j

D M K K



      (4) 

where J  is the total number of decomposition levels, A
JS  

represents the approximation band after J  decomposition 
levels and ,1jS j J   are the detail subbands. 

In the transmission scheme employed by the original 
SIM codec [5], the bin-sizes at the finest quantization level 
are identical across all subbands. Moreover, each decoding 
point ensures that a complete bitplane is received, meaning 
that the same number of bitplanes is discarded across all 
wavelet subbands [5]. However, the subband transmission 
order employed in the original SIM codec is not necessarily 
optimal when using the L-infinite distortion metric. 

In the following, we will investigate rate-distortion 
optimization in L-infinite sense. In our computations, we 
employ the generic expression of the L-infinite estimator 

given by (4); the problem to be solved is to identify the 
number of bitplanes to be transmitted from each subband 
such that the rate is minimal for any given MAXAD bound. 

4.2. Rate-distortion optimization algorithm 

After J  decomposition levels, the intraband bit-plane 
coding scheme generates an embedded bit-stream j  for 
each subband jS , 1 j J  . The bit-streams j  can be 
truncated at a predefined set of points ,j jb  , for jb  
discarded bit-planes in subband jS . Each truncation point 

,j jb   is associated with a certain bitrate ( )j jR b  and a 
distortion ( )j jD b . The problem at hand is to ensure an 
optimized performance in rate-distortion sense. This is 
formulated as a constrained optimization problem, by which 
the optimal truncation points ,j jb   need to be determined 
such that the rate is minimal subject to a constraint on the 
total distortion. 

In JPEG2000 [15] the global optimization problem is 
split in optimization problems per subband. However, the 
non-additive nature of the L-infinite metric prevents us from 
taking this route. In addition, the problem is not necessarily 
convex and the upper bound formulation of (4) does not 
guarantee a convex optimization problem either. In order to 
obtain a convex problem we consider as eligible truncation 
points only those points that lie on the convex hull of the 
distortion-rate (D-R) function in each subband. So, the 
solution is to obtain the convex-hull of the D-R function in 
each band; the problem is then convex and the solution can 
be determined using the method of Lagrange multipliers – 
see e.g. [11]. The optimal distortion-rate slopes ( )j jb  are 
calculated using the bisection-method as follows: 

 
,

,

( 1) ( )
( )

( ) ( 1)
j

j

j bj j j j
j j j j

j j j j j b

DD b D b
b w w

R b R b R


 
 
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 (5) 

where jw  are the weighting factors mentioned in (1). When 
computing the increase in rate , jj bR  when an additional 
quantization level jb  is encoded, we have considered the 
actual number of bits per vertex required for each subband 
at each decoding point. , jj bD  denotes the decrease in
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Figure 2. Visual comparison between the original Skull mesh model (left), the decoded version when employing the L-infinite 
driven SIM codec (center) and the L-2 driven SIM codec (right) at a target MAXAD of 2.1% of the bounding box diagonal 
corresponding to a rate of 0.607 bpv. 

distortion between two successive truncation points (i.e. 
subband bitplanes). , jj bD  is estimated and we have 
considered both the L-2 and the L-infinite distortion. 

In the L-2 case, the distortion is modeled similar to [14] 
and [8]. Unlike [8], where the optimal quantization steps are 
derived for a target rate, we focus on SAQ. Moreover, we 
employ the classical high-rate approximation 

2 2
, ,02 /12j

j

b
j b jD   . Similar to (4), this is a data-

independent estimation and corresponds to a classical 
transmission of subband bitplanes used in wavelet coding of 
images [3, 4, 16] and in the standardized mesh coding 
technology MeshGrid [1]. The weights jw  are numerically 
obtained such that the transform is approximately unitary, 
giving 2 j J

jw  , 1 j J   and 1
1 1.25 2 Jw   . 

In the L-infinite case, the distortion at every possible 
decoding point is estimated with the data-independent 
estimator of (4). As previously mentioned, the SIM codec 
employs Successive Approximation Quantization, for which 
the decrease in distortion between two decoding points is 
given by , ,02 j

j

b
j b jD   . In this case, the employed 

weights are given by 1( )A jJ

j
j SS

w K K  with A
JS

K  and 
jSK  

having the same values as in (4).  
The slopes ( )j jb  from all decomposition levels j  and 

all bitplanes are sorted in a monotonically decreasing order, 
indicating the order in which the subbands have to be 
transmitted. This corresponds to a global distortion-rate 
curve for which the slopes are monotonically decreasing. 
That is, the global distortion-rate curve ensures that the rate 
is minimal for each target MAXAD and it indicates the 
appropriate number of bitplanes to be sent from each 
subband. Similar to [11], the proposed approach offers 
scalability in L-infinite sense. 

5. EXPERIMENTAL RESULTS 

In a first set of experiments, we compare the SIM codec 
when driven by the data-independent L-2 and the data-
independent L-infinite distortion estimators. Figure 1 
depicts experimental results in terms of actual MAXAD 
versus bitrate. Each dot on the rate-distortion curves 

corresponds to a valid decoding point, where the local error 
is bounded and guaranteed. Irrespective of the model, one 
observes that the L-2 driven SIM codec is frequently prone 
to large vertex errors (“error spikes”). This stems from the 
very nature of the L-2 metric, which does not set bounds on 
the local errors, quantifying the global error instead.  

Visually, this phenomenon is depicted in Figure 2. The 
Skull model is compressed at a user-specified MAXAD 
bound using the L-infinite codec, employing the data-
independent estimator of (4). The L-2 driven codec then 
compresses the geometry of the model at the same rate as 
the L-infinite codec, but in this case the L-2 distortion is 
minimized. The green color indicates that the imposed 
MAXAD bound is not exceeded. Whenever the distortion 
value is higher than the imposed bound, the corresponding 
vertex is represented in red. The conclusion to be drawn is 
that the L-2 distortion can lay no claim on minimizing the 
local error on the vertices and that an L-infinite approach 
should be followed in order to offer this functionality. 

To our knowledge, the only wavelet-based L-infinite- 
oriented mesh codec in the literature is the MeshGrid-based 
system proposed in [11]. We therefore consider this coding 
system to be the state-of-the-art in L-infinite coding of 
meshes. In the last set of experiments, we compare the 
proposed technique against the state-of-the-art. Figure 3 
depicts experimental results for two MeshGrid models 
(Humanoid and Heart). Both systems make use of their 
corresponding data-independent L-infinite estimators. The 
comparison is made in terms of the actual obtained L-
infinite distortion versus required bitrate. Both models have 
been originally created for the MeshGrid system and were 
not compatible with the SIM codec. For this reason, a 
remeshing procedure was required, using the remesher of 
[17]. One notes that at high rates, for the Heart model, the 
L-infinite driven SIM codec reaches the remeshing error, 
while MeshGrid further lowers the MAXAD as the rate is 
increased above 17 bpv. At low-to-medium rates, the 
performance differences are substantial, indicating that for 
L-infinite coding, a compression system deploying wavelets 
on surfaces, as proposed in this paper, should be favored 
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Figure 3. Actual MAXAD (as a percentage of the bounding box diagonal) versus rate (bpv) for the Humanoid (left) and Heart 
(right) mesh models when employing the L-infinite driven versions of the MeshGrid and SIM codecs. 

over a coding architecture that employs a volumetric 
wavelet transform, as in the case of MeshGrid [11]. 

6. CONCLUSIONS 

In this paper, we propose a data-independent estimator for 
the L-infinite distortion in the context of subdivision-based 
wavelet compression of semi-regular meshes. A rate-
distortion optimization algorithm is also proposed that 
minimizes the rate for a given distortion bound. The results 
show that an L-2 driven subdivision-based wavelet codec 
lays no claim on ensuring a bound on the local error, being 
frequently prone to error spikes, and that an L-infinite 
driven codec is a viable solution to this problem. 

In addition, the proposed system brings substantial 
performance improvements in L-infinite coding over the 
state-of-the-art L-infinite MeshGrid-based system of [11]. 
We note that, although very fast in computational terms, a 
data-independent L-infinite estimator relies solely on high-
rate assumptions. Future work will revolve around the 
derivation of a more accurate, data-dependent estimator. 
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