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ABSTRACT

With hard X-rays synchrotron beams, phase contrast can be
obtained with the measurement of the Fresnel diffraction in-
tensity patterns associated to a phase shift induced by the
object. We have studied the resolution of this inverse problem
with an iterative thresholding algorithm in wavelet coordi-
nates combined with an iterative nonlinear method with a
Tikhonov regularization. The phase retrieval algorithm was
tested for a 3D Shepp-Logan phantom in the presence of
noise. The results show that the combined approach outper-
forms the Mixed, the CTF and the nonlinear methods.

Index Terms— Inverse problems, Phase retrieval, X-ray
imaging

1. INTRODUCTION

Phase sensitive imaging extends the possibilities of X-ray ab-
sorption imaging (µ-CT) [1] increasing the sensitivity, up to
a factor 103 in the hard X-rays region. Coupled to tomogra-
phy, it has found many applications in material science and
biomedical imaging.

Several phase-sensitive imaging techniques have been de-
veloped [2, 3, 4]. In the propagation-based method, the detec-
tor is located behind the object, and several phase contrast im-
ages are recorded for different detector-sample distances [3].
The phase can be retrieved by methods based on the nonlinear
relationship between the diffraction image and the phase map.
Yet, this phase retrieval problem is ill-posed, so regularization
approaches are required.

Several linear phase retrieval methods have already
been proposed based on the Transport of Intensity Equa-
tion (TIE) [5], or the Contrast Transfer Function (CTF) [6].
The Mixed approach uses the two former methods [7]. These
approaches rely on a linearized relation between the phase
and the intensity. A new method based on a Tikhonov regu-
larization and the Fréchet derivative of the intensity ID(ϕ) at
different distances D was proposed recently [8].

Yet, these methods are rather sensitive to noise and the
nonlinear approach fails to retrieve accurately the low fre-
quencies of the phase map. It does not converge at all if the

initialization point is too far from the solution. In this work,
a novel approach is presented combining the former nonlin-
ear iterative approach with a new low frequency regularized
solution of the linear problem in wavelet coordinates.

This paper is organized as follows. In section 2, we sum-
marize the image formation. In section 3 the resolution of
the inverse problem in wavelet coordinates is detailed and the
nonlinear approach with a Tikhonov regularization is also in-
troduced. Experiments are performed to validate the proposed
method in 4 and we conclude in section 5.

2. THE DIRECT PROBLEM OF IMAGE
FORMATION

An object illuminated with partially coherent X-rays of wave-
length λ can be described by the 3D complex refractive index
distribution [9]:

n(x, y, z) = 1− δr(x, y, z) + iβ(x, y, z) (1)

where the imaginary part β describes the absorption index,
while the real part δr is the refractive index decrement for the
spatial coordinate (x, y, z). The propagation path of the X-ray
in a thin object can be presumed straight, so the interaction of
X-rays with matter can be described by a transmittance func-
tion T of the coordinates x = (x, y) in a plane perpendicular
to the propagation direction z [9]:

T (x) = exp[−B(x) + iϕ(x)] = a(x) exp[iϕ(x)] (2)

where a(x) is the amplitude modulation and ϕ(x) is the phase
shift induced by the object. B and ϕ are related to the real and
imaginary part of the index by:

B(x) =
2π

λ

∫
β(x, y, z)dz (3)

and
ϕ(x) = −2π

λ

∫
δr(x, y, z)dz. (4)

The recorded intensity at distance D is given by the
squared modulus of the Fresnel transform of the transmit-
tance:

ID(x) = |FrD [T (x)] |2 = |T (x) ∗ PD(x)|2 (5)

20th European Signal Processing Conference (EUSIPCO 2012) Bucharest, Romania, August 27 - 31, 2012

© EURASIP, 2012  -  ISSN 2076-1465 884



where ∗ denotes the 2D convolution of the transmittance with
the Fresnel propagator at distance D,

PD(x) =
1

iλD
exp

(
i
π

λD
|x|2

)
. (6)

3. THE PHASE RETRIEVAL INVERSE PROBLEM

The image formation is a highly nonlinear process. Assuming
that the absorption is slowly varying, several phase retrieval
approaches have linearized the Eq. 5 under some rather re-
strictive assumptions. The Fourier transforms of the intensity
can be written [7]:

F {ID} (f) = Ĩϕ=0
D (f) + 2 sin(πλD|f |2)F {I0ϕ} (f)

+
λD

2π
cos(πλD|f |2)F {∇ · (ϕ∇I0)} (f) (7)

where Iϕ=0
D (f) is the intensity at distance D if the phase was

zero. The absorption a(x) is obtained experimentally if the
detector is placed at distance D = 0 m from the sample.
Based on the former equation, the phase retrieval problem can
be express as an inverse linear problem:

I = Bϕ+ ε, (8)

where I = ID − Iϕ=0
D is the noisy data, ε additive Gaussian

noise, ϕ the phase to be retrieved and B is a linear operator.
This solution is not optimal and gives not good reconstruc-
tions for noisy data and low frequencies.

In this work, in order to improve the phase retrieval, we
have combined two approaches: a resolution of the linear
problem in wavelet coordinates with an iterative thresholded
Landweber type algorithm [10, 11, 12] and a nonlinear ap-
proach based on the Fréchet derivative of the intensity. The
phase maps where the Mixed approach or the CTF method
stagnate will be used as an initialization in our method. The
linear methods provide in very few iterations an approximate
solution but improved performance requires to take into ac-
count the non linearities and a low frequency wavelet denois-
ing, with a slower convergence rate.

3.1. Resolution of the linear inverse problem in wavelet
coordinates

In this section, we consider a resolution approach for the in-
verse problem based on the orthogonal wavelet representa-
tion and a classical thresholded Landweber algorithm. We
suppose that the phase ϕ admits a sparse representation in a
orthogonal wavelet base Ψ = {ψλ, λ ∈ I}, which is written:

ϕ =W∗v, (9)

where v ∈ l2 is a wavelet coefficients vector, andW∗ is the
synthesis operator. The corresponding family is indexed by
the elements λ of an infinite set I, which includes the level of
the resolution, the position and the type of wavelet.

The phase retrieval problem can be formulated as an un-
constrained optimization problem with an l1 regularization
term for the wavelet coefficients and with a regularization pa-
rameter κ. The wavelet coefficients are optimized as follows:

min

{
‖I − BW∗v‖22

2
+ κ‖v‖1,v ∈ l2

}
(10)

where lp is the norm of the vector v defined as: ‖v‖p =

(
∑
i v
p
i )

1/p.
In terms of convex analysis, the first term is convex, semi-

continuous and differentiable with β-Lipschitz continuous
gradient for a coefficient β > 0. The regularizing term is
semi-continuous and not differentiable. This optimization
problem has been studied and efficient algorithms have been
proposed [12].

We selected the following iterative method: v0 ∈ l2, and
0 < τ < 2/β and for each n ∈ N , we construct the following
sequence:

vn+1 = Sατ {vn − τWB∗ [BW∗(vn)]− I} (11)

where Sa(u) = sign(u) max (|u| − a, 0) is the soft thresh-
olding operator. The solution is obtained from the final iterate
v∞ with ϕ∞ = W∗v∞. Since we intend to use the wavelets
to improve the low frequency phase retrieval, the iterations
described by Eq. 11 are implemented only at the lowest level
of resolution and the operator WBW∗ is approximated with
the lowest level of resolution of the wavelet basis.

The solution obtained when the error stagnates is used as
initialization for the nonlinear approach based on the Fréchet
derivative of the intensity with Tikhonov regularization de-
scribed in the next section. When the nonlinear solution stag-
nates, the linear wavelet algorithm is used again. By alternat-
ing the two phase retrieval approaches, we obtain a progres-
sive refinement of the solution.

3.2. Nonlinear phase retrieval with Tikhonov regulariza-
tion

This regularization methodology is more general that the one
investigated in [8] and it gives goods results for noisy and
non smooth phase maps. The intensity ID can be consid-
ered as a continuous and a nonlinear function of the phase
ϕ. We have assumed that the domain D[ID(ϕ)] where the
operator ID(ϕ) is defined belongs to the functional Sobolev
space H2,2

� (Ω) = {ϕ ∈ H2,2(Ω), ∂ϕ
∂~n = 0}, where ∂ϕ

∂~n is the
normal derivative of the phase [8]. The aim of the nonlinear
Tikhonov regularization is to minimize the functional:

Jα(ϕ) =
1

2
‖ID(ϕ)− Iδ‖2L2(Ω) +

α

2
‖ϕ‖2L2(Ω) (12)

where α is a regularization parameter, and where ‖.‖L2(Ω)

denotes the L2(Ω) norm. The nonlinear Tikhonov regulariza-
tion has been extensively studied. The optimality condition
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can be written with the adjoint I
′

D(ϕ)
∗

of the Fréchet deriva-
tive of the intensity I

′

D(ϕ):〈
I
′

D(ϕ)
∗
[ID(ϕ)− Iδ], h

〉
L2(Ω)

+ α〈ϕ, h〉L2(Ω) = 0 (13)

where 〈, 〉 denotes the scalar product. Let ϕk be the phase at
the iteration k. The phase estimate ϕk+1 at the iteration k+ 1
is obtained from the phase ϕk at the previous iteration k with:

ϕk+1 = ϕk − τk{I
′

D(ϕk)∗[ID(ϕk)− Iδ] + αϕk} (14)

To minimize the nonlinear Tikhonov’s functional, along the
descent direction:

δk = I
′

D(ϕk)∗[ID(ϕk)− Iδ] + αϕk, (15)

a step length parameter τk is chosen. The standard Landwe-
ber method is thus modified by introducing a linear search
procedure with a variable step τk, obtained with a dichotomy
strategy. The regularizing parameter α is chosen by trial-and-
error in order to obtain the best decrease of the regularization
functional.

The computation of the iterates is based on the calculation
of the adjoint of the Fréchet derivative of the intensity. The
Fréchet derivative of the operator ID(ϕk) at the point ϕk is
the linear operator Gk defined as [8]:

ID(ϕk + ε) = ID(ϕk) +Gk(ε) +O(ε2). (16)

I ′D(ϕk)(ε) = Gk(ε) is a linear operator and it is computed
explicitly together with the adjoint operator G∗k in [8].

4. SIMULATIONS DETAILS

4.1. Simulation of the image formation

The imaging system was simulated in a deterministic fashion
[13]. Two phantoms were defined, one for the absorption co-
efficient and one for the refractive index decrement. Fig. 1(a)
displays the 3D Shepp-Logan, consisting of a series of ellip-
soids on which the projections are based. In order to perform
realistic simulations, the values of the absorption coefficient δ
and of the refractive index β for different materials were used
in different regions [13].

The intensity images are obtained as the squared mod-
ulus of the convolution product calculated by Fourier trans-
forms, using Eq. 5. The intensity images were calculated
for the three propagation distances D=[0.035, 0.072, 0.222]m.
Fig. 1(b) displays the intensity image obtained at the first dis-
tance with 24dB. These propagation distances are taken into
account randomly during the phase retrieval algorithm. The
X-ray energy was 24 keV (λ = 0.5166Å) and the correspond-
ing pixel size was 1µm. The images were down-sampled to
512× 512 pixels.

The simulations in this work were performed for additive
uniformly distributed white noise with zero mean and with

a peak-to-peak signal to noise ratios (PPSNR) of 24dB. The
peak-to-peak signal to noise ratio is defined by: PPSNR =
20log( fmax

nmax
), where fmax is the maximum signal amplitude

and nmax is the maximum noise amplitude. Similar results
were obtained for PPSNR below 12dB.

4.2. Initialization, stopping rules and wavelet implemen-
tation

In our simulations, the Mixed and the CTF methods were used
because they provide in very few iterations approximate ini-
tialization solutions. These phase maps are stagnation points
where the novel approach is necessary. An important role in
the algorithms is played by the regularization parameters. In
order to avoid obtaining solutions diverging far away from the
real solution, these parameters are chosen by trial-and-error.
The parameter in the Mixed approach may be set at a very
small value (i.e 10−100), and in the proposed algorithm α and
κ are set to the same value 10−3. The iterations are terminated
when the following conditions are fulfilled:

‖ID(ϕk+1)− ID(ϕk)‖L2(Ω) ≤ ω‖ID(ϕk)‖L2(Ω) (17)
‖Iδ − ID‖L2(Ω) ≥ δ (18)

where ω is a parameter that was set at 0.01 by trial-and-error.
For the wavelet representation, the orthonormal wavelet

DB1 Dauchechies implemented in Matlab was used with
only 64 low resolution coefficients. Similar results were
obtained with other wavelet basis. The convex part of the
functional to be minimized is differentiable with Lipschitz
gradient with β = ‖WBW∗‖2. Following the approach

(a)

(b)

Fig. 1. (a) Original phase map to be retrieved, (b) Fresnel
diffraction pattern at propagation distance D = 0.035 m with
PPSNR=24dB.
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proposed in [14], given x0 et C = WBW∗, we construct
a sequence (xn) such that xn = C∗Cxn−1, and at each
iteration ρn = ‖xn‖

‖xn−1‖ is calculated. After convergence,
limn→∞ ρn = ρ∞ = ‖WBW∗‖2.

Since ideal reconstruction is available, direct comparisons
can be made. The method will be quantitatively evaluated
by measuring the normalized mean square error (NMSE) us-
ing the L2(Ω) norm. It is defined by: NMSE = 100 ×
‖ϕ−ϕk‖L2(Ω)

‖ϕ‖L2(Ω)
, where ϕk is the phase recovered at iteration k

and ϕ the ideal phase to be recovered.

5. DISCUSSION AND CONCLUSION

The performance of the proposed method was analyzed by
comparison with the solutions obtained for noisy data with
the CTF [6] and the Mixed approach [13].

(a)

(b)

Fig. 2. Normalized mean square error for the phase versus
iteration number with the proposed algorithm initialized with
(a) the Mixed solution and (b) with the CTF solution.

The evolution of the NMSE as a function of the itera-
tion number is displayed in Fig. 2 for the two starting points.
In these plots, one iteration corresponds to a random cycle
through the intensity images obtained for the three distances.
These curves show the refinement of the solution obtained
with the combined WNL approach. The wavelet denoising
scheme makes possible the escape from the local minima ob-
tained with the nonlinear method alone [8]. The error maps
for noisy data are displayed in Fig. 3.

A comparison between the true solution for the Shepp
Logan phantom and the solutions obtained with the three
approaches, CTF, Mixed and Wavelet-Nonlinear (WNL), is
showed in Fig. 4. The errors on the phase map have been
significantly reduced by our new method. According to the
results presented in Table 1, an error decrease of a 80.95%

(a)

(b)

Fig. 3. Error map for the phase retrieved with the proposed
algorithm initialized with (a) the Mixed solution and (b) with
the CTF solution.

(a)

(b)

Fig. 4. Diagonal profiles obtained for the true, the Mixed, the
CTF solutions and the solution obtained with the combined
nonlinear and wavelet approach.

and 75.15% was obtained for the Mixed and the CTF so-
lutions respectively. The phases used as starting points for
our reconstruction are displayed in Fig. 5(a), 5(b), together
with the corresponding phases retrieved with the proposed
algorithm Fig. 5(c), 5(d).
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(a) (b)

(c) (d)

Fig. 5. Phase solutions obtained with the (a) Mixed and (b)
CTF algorithms and reconstructed phase with the proposed
algorithm for the starting point given by (c) Mixed and (d)
CTF algorithms.

Table 1. Initial NMSE(%) and values at convergence for
Wavelet-Nonlinear method (WNL) for the two initializations.

CTF WNL Mixed WNL
56.54 14.05 63.84 12.16

In this work, we have presented a new phase retrieval
approach based on a combination of a nonlinear phase re-
trieval method with the Fréchet derivative of the intensity and
a thresholded Landweber algorithm in wavelet coordinates.
Both the high and low frequency ranges of the phase retrieved
are improved. Three propagation distances are used in a ran-
dom way to achieve a good reconstruction. The reconstruc-
tion quality for a projection of a 3D Shepp-Logan phantom
has been quantitatively evaluated with noise. The combined
method outperforms the linear methods. In future work, the
method will be tested on experimental data to test its robust-
ness to noises and artifacts. The method is expected to open
new perspectives for the study of biological samples.
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