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ABSTRACT

Recently, the joint source-channel coding schemes based on
analog mappings have gained prominence. Their simplicity
and low delay compared to other coding strategies make them
more suitable for real-time applications. In this work, we
propose a novel joint source-channel coding scheme, based
also on analog mappings, for a point-to-point communication
channel with side information at the receiver (also known as
Wyner-Ziv scenario).

Index Terms— Joint source-channel coding, Wyner-Ziv
scenario, analog mappings,

1. INTRODUCTION

In communications systems, to asses how well a transmission
works, different performance measures are adopted depen-
ding on the nature of the source. Given a discrete-time source
with a continuous alphabet, the error between the actual and
estimated source symbols is quantified through a distortion
measure d : S×Ŝ −→ R+, where S represents the alphabet
of the source symbols and Ŝ the reconstruction alphabet.

The separation theorem proved by Shannon [1] states
that, under unconstrained complexity conditions, the same
distortion can be achieved either by separating the source
and the channel coding or by generating the channel symbols
directly from the source symbols (joint coding). This sepa-
ration principle was originally presented for ergodic sources
and channels in point-to-point communications. However,
since [1], the separation principle has been proved to be also
valid in other communication scenarios. For instance, it is
proved in [2] that the separation principle still holds in the
Wyner-Ziv scenario (as long as the source and channel are
ergodic). By this scenario, the author in [2] refers to the point-
to-point communication scheme with side information at the
decoder, where by the side information at the decoder it is
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meant that information correlated with the source is available
at the decoder.

In the literature, there are several efficient source co-
ding schemes for the Wyner-Ziv scenario, which combined
with capacity approaching channel codes such as LDPC or
Turbo codes, allow the separation strategy to perform close
to the theoretical achievable limits. However, the separation
strategy has some drawbacks, specially in real-time applica-
tions, since the source and channel coding schemes need of
large codeword lengths to be efficient, which implies high
coding/decoding complexities and delays.

The Joint Source-Channel Coding (JSCC) is an alternative
to the separation strategy schemes. In the literature, several
JSCC schemes have been proposed for point-to-point com-
munications. Among them, those based on vector quantizers
[3], [4] and on purely analog mappings [5], [6], [7], [8] stand
out because of their low delay and simplicity. The analog
mappings are classified, according to their bandwidth ratio β,
into bandwidth-reduction (β < 1) and bandwidth-expansion
(β > 1) mappings, where by bandwidth ratio it is meant
the ratio between the channel and the source bandwidths 1,
assuming idealized sampling of the source and ideal Nyquist
channels. In other words, it is the number of channel sym-
bols used per source symbol. As it is stated in [5], in the
bandwidth-reduction case, the performance of analog map-
pings is comparable to the performance of vector quantizers
with the benefit of simpler encoding and decoding.

Not too much work on JSCC schemes for Wyner-Ziv sce-
narios can be found in the literature. For instance, in [9], an
hybrid digital-analog scheme was proposed. The principal ad-
vantage of this scheme over the separation schemes is that the
distortion at the receiver does not drastically change with sud-
den drops of the signal-to-noise ratios (SNR). However, high
complexity and delay are still necessary for efficient commu-
nications. A possible solution to reduce the complexity and
delay while still achieving good distortions is to use analog
mappings. In this sense, in [10], an iterative algorithm was

1In some works, by bandwidth ratio it is referred to the ratio between the
source and channel bandwidths.
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proposed (it is actually an extension of the algorithm pro-
posed in [11] for point-to-point communications) to find the
optimum analog mappings. The problem with this solution,
once the algorithm has found the optimum mapping, lies in
the need to use large look-up tables in the coding and de-
coding, with the consequent complexity. However, despite
being difficult to implement, the results shown in [10] for
β = 1 give an important clue of how to implement efficient
mappings when side information is available only at the de-
coder: multiple source points have to be mapped to the same
channel symbols. Similarly, for this case of side informa-
tion at the decoder, [12] proposes bandwidth-expansion ana-
log mappings.

In this work, we present a novel bandwidth-reduction ana-
log JSCC scheme, specifically designed for the Wyner-Ziv
scenario. This new scheme modifies the analog mappings
presented in the literature for point-to-point communications
[5, 8], by using the previously mentioned premise that diffe-
rent source points should be mapped to the same channel sym-
bols. Although the proposed JSCC scheme has been designed
for β = 1/2, i.e. one channel symbol is transmitted per two
source symbols, we believe that this solution can pave the way
for the design of new schemes working at different β’s.

The rest of the paper is organized as follows. In Section
II, the communication problem is stated and the analog map-
pings proposed in [5] and [8] are described. The proposed
scheme description for the problem is given in Section III.
In Section IV, the performance of the scheme is evaluated
and compared to the theoretically achievable bounds. Finally,
conclusions are given in Section V.

2. STATEMENT OF THE PROBLEM AND ANALOG
BANDWIDTH-COMPRESSION MAPPINGS

2.1. Statement of the Problem

Joint
source-channel

encoder

X Y

Side information

Source
S ŜJoint

source-channel
decoder

S W

U

AWGN channel

Fig. 1. Communication Scenario

Let us consider the problem of a point-to-point com-
munication with side information available at the receiver,
as it is depicted in Fig.1. The sequence of independent
and identically distributed (i.i.d.) Gaussian symbols of
zero mean and variance σ2

S , i.e. Si ∼ N (0, σ2
S), has to

be transmitted through an AWGN channel. For this pur-
pose, the symbols are first grouped into vectors of length

n, S = [S0, . . . , Sn−1], which are then encoded by channel
vectors X = [X0, . . . , Xβ(n−1))], where β accounts for the
bandwidth ratio. The received channel symbols are given by
Yi = Xi + Ni, i = 0, . . . , β(n − 1), where {Ni} are real
zero-mean Gaussian random variables with variance σ2

n, i.e.
Ni ∼ N (0, σ2

n).
Let us consider that the side information vector W =

[W0, . . . ,Wn−1] is Gaussian. In order to model its correla-
tion with the source vector S, the vector W is defined as:

W = S + U (1)

where U = [U0, . . . , Un−1] is a sequence of i.i.d Gaussian
random variables, Ui ∼ N (0, σ2

u), independent to S.
As it is common in the literature, we use the square error

as the distortion measure, i.e. d(s, ŝ) = (s − ŝ)2. The dis-
tortion between two vectors is defined by the average of the
symbol-by-symbol distortion:

d(S, Ŝ) =
1

n

n∑
i=1

d(Si, Ŝi) =
1

n

n∑
i=1

(Si − Ŝi)2 (2)

Since for the Wyner-Ziv scenario depicted in Fig.1 the
separation theorem holds [2], it is straightforward to derive
(see for example [13]) the minimum achievable distortion by
combining the expression of the rate-distortion region [14]
with the capacity expression of the AWGN channel. By de-
noting as ρ the channel SNR (CSNR), the minimum achieva-
ble distortion is given by:

dmin >
σ2
F

(1 + ρ)β
, (3)

where

σ2
F =

σ2
Sσ

2
u

σ2
S + σ2

u

(4)

2.2. Analog Mappings for bandwidth-compression

The basic idea of the bandwidth-reduction analog mappings
for JSCC consists of mapping the source symbols directly into
the channel symbols by using parametric curves or surfaces
as “continuous codebooks”. For the particular case of a com-
pression ratio 2:1 (β = 1

2 ), a two-dimensional vector formed
by two source symbols, Sk = (S2k, S2k+1)>, is first pro-
jected onto a subset consisting of a parametric curve in the
two-dimensional space and then, this projection is translated
into a real value that is employed as the channel symbol Xk.

As it was proved in [11], the optimum bidimensional
curve depends on the CSNR. As CSNR increases, this op-
timum curve approaches the curve composed of two com-
plementary Archimedes’ spirals studied in [5] and plotted
in Fig.2(a). In this mapping, which we call Mapping A,
the vector Sk = (S2k, S2k+1)T is projected onto the clo-
sest point on the curve, and then, the channel symbol Xk is
given a value proportional to the square of the radius of the
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Fig. 2. The two different mappings employed. (a) Archimedes’
spirals, and (b) the discontinuous curve proposed in [8].

projection. Notice that the only available parameter to be op-
timized for a certain channel SNR is the separation between
the consecutive spiral arms, denoted by ∆ in Fig.2(a).

On the other hand, the mapping shown in Fig.2(b) was
proposed in [8], which is not as efficient as the spirals’ map-
ping, but has the advantage of a simpler coding/decoding. Ba-
sically, this mapping we call Mapping B is formed by hori-
zontal segments confined inside a circumference of radius R.
First, the vector Sk = (S2k, S2k+1)T is projected into the clo-
sest horizontal line. In case the projection of the vector falls
out of the circumference, this projection is substituted by the
closest point on the same line but inside the circumference.
Then, this point is mapped to a real value Xk through a func-
tion that maps the horizontal segments into equal-width inter-
vals of the real axis. This mapping from Sk to the channel
symbol Xk can be expressed:

Xk = K1(is2 +K2(−1)is2 · lis2 (S2k)), (5)

where

is2(S2k+1) = round
[
S2k+1

∆q

]
, (6)

lis2 (S2k) =
sgn(S2k)

2
·min

(
1,

|S2k|√
R2 − (∆q · is2)2

)
, (7)

with K1 and K2 being two positive constants. Notice that, in
this case, the design parameters for a fixed SNR are three: the
quantization step ∆q for S2k+1, the maximum dynamic range
R for S2k and S2k+1, and K2, the width of the interval in the
signal space used to represent S2k.

3. PROPOSED COMMUNICATIONS SCHEME

In this section, we introduce the 2:1 analog mapping we pro-
pose for the scenario depicted in Fig.1. The i.i.d. source
symbols are first grouped in pairs. For the sake of simpli-
city, let us assume k = 0 and denote the pair of symbols

by S = (S0, S1). Then, this pair is mapped into a channel
symbol X by applying a 2:1 analog mapping that we explain
below. Obviously, as the side information is not known at the
transmitter, this mapping will be independent of W.

δ
(s0, s1)

(z0, z1)

Z1

Z0

S1

S0
0

L
R

Fig. 3. The nested Hexagons {Hi}

The question is: how can we use the side information to
improve the performance of the analog mappings described
in Section 2.2? The side information at the decoder gives
probabilistic information about the location of S. The lower
σu is, the more accurate the information about the location
of S will be. In order to take advantage of this fact, we di-
vide R2 into different areas, in this case hexagons, and the
channel symbol is used to specify the location of S inside the
hexagon. Thus, roughly speaking, we use the side informa-
tion W = (W0,W1) at the decoder to estimate the hexagon
which S belongs to and the channel symbol X to estimate the
location inside the hexagon. Having said that, we now delve
into the proposed JSCC scheme.

As mentioned, the R2 space is first partitioned into a fa-
mily {Hi} of regular equal-size hexagons of side length δ, as
shown in Fig.3. The optimum δ varies almost linearly with
σu. Let us denote by H ∈ {Hi} the hexagon which (S0, S1)
belongs to and by C = (C0, C1) the center of H. Then, the
channel symbolX is built by applying one of the analog map-
pings g(·) described in Section 2.2 to the pair of variables
(Z0, Z1), defined as:

(Z0, Z1) = (S0 − C0, S1 − C1) · L
δ

(8)

The multiplication by L
δ aims to normalize (Z0, Z1) such that

‖(Z0, Z1)‖2 ≤ L, where L is an arbitrary constant. The pa-
rameter ∆ in mapping A and the parameter R in mapping B
will have to be chosen according to this L value. An easy
possibility to select ∆ in mapping A would be to select a L
that makes the distributions of (Z0, Z1) and (S0, S1) equal,
in which case the optimum ∆ value would be equal to the
optimum ∆ in point-to-point communications without side
information. Unfortunately, the distribution of (Z0, Z1) is
not Gaussian (it could be made uniform by using random
dithering), and consequently both distributions cannot coin-
cide. Therefore, simulation will be necessary to calculate the
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Fig. 4. The average SDRs achieved with mapping A and mapping B together with the theoretical bound versus σu for (a) SNR=5dB (b)
SNR=20dB and (c) SNR=30dB.

optimum ∆. In the case of mapping B, on the other hand,
due to the non-Gaussian distribution of (Z0, Z1) and in order
not to leave areas of (Z0, Z1) points with relevant probability
outside the circumference of radius R, the radius R is chosen
as R = L.

At the receiver side, as the goal is to minimize the distor-
tion given by the quadratic error, the optimal estimator is the
minimum mean square error (MMSE) estimator given by

(Ŝ0, Ŝ1) = E{S0, S1 | Y,W}

=

∫ ∫
(S0, S1)P (S0, S1 | Y,W)dS0dS1

=
1

K

∫ ∫
(S0, S1)P (Y | S0, S1)

·P (W | S0, S1)P (S0, S1)dS0dS1, (9)

where P (S0, S1) is the a priori probability of the source sym-
bols and K is a normalization constant. The last equality is
derived by applying the Bayes’ rule and by using the fact that
Y − S−W form a Markov chain.

4. PERFORMANCE ANALYSIS

In this section, we evaluate the performance of the proposed
scheme and compare it with the theoretical bound defined in
(3). Instead of representing directly the distortions, we plot
the corresponding signal-to-distortion ratios (SDR) defined as
SDR=

σ2
s

d .
For mappings A and B, Fig.4(a), (b) and (c), show the

SDRs (in dB) achieved with the proposed scheme versus the
standard deviation σu of the random variable U , for ρ=10dB,
ρ=20dB and ρ=30dB, respectively (recall that U is used to
define the correlation between the source symbol S and the
side information W ). The SDRs relative to the minimum
theoretically achievable distortion given in (3) and the dis-
tortion achieved with mapping A when no side information is

available - mapping A outperforms mapping B in this case
- are also included in the plots. Obviously, the latter dis-
tortion does not change with σu and results in an horizontal
line in the graph. In addition, Fig.5 shows the same SDRs
curves but now versus the channel SNR, assuming a fixed
value σu=0.05. In this case, the distortion achieved when no
side distortion is available is not included.

First, we see in Fig.4 that the achieved distortions vary
with σu at a similar rate as the minimum theoretical dis-
tortion curves, which suggests that the adopted strategy of
partitioning the bidimensional space into a set of hexagons or
other lattices goes in the right direction. Unfortunately, there
is a constant gap between the theoretical and the achieved
distortions that grows with the channel SNR (see Fig.5).
Furthermore, this gap is larger than in the case of the point-
to-point scenario without side information (see [8] for exam-
ple), where the gap does not go beyond 2dB in the range of
analyzed SNRs. Nevertheless, putting these results into per-
spective by comparing them with some of the results achieved
with separation schemes, we can state that the achieved re-
sults are very satisfactory taking into consideration the low
complexity and delay of the proposed scheme. For example,
the source coding scheme based on nested lattices [15] of two
dimensions, which is comparable to the proposed scheme in
complexity and delay, renders distortions 6.7dB2 higher than
the Wyner-Ziv distortion bound for the rate (R ≈ 1.7b/s)
that corresponds to a SNR of 20dB for the channels. In
the cited work, this gap is reduced to 1.5dB by employing
Slepian-Wolf channel coding schemes, but also increasing
considerably the complexity and delay by the use of LDPC
codes. In [16], a source coding scheme of moderate com-
plexity based on trellis codes is proposed, which renders
distortions around 3dB away from the Wyner-Ziv bound.
Notice that the 3dB and the moderate complexity does not
take into account the channel coding, which will add an extra

2With lattices D4 and Λ24 around 5.5dB and with E8 around 4.7dB.
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distortion loss respect to the bound as well as a complexity
increment.
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5. CONCLUSIONS

In this article, a novel analog joint source-channel coding
scheme for the Wyner-Ziv scenario (point-to-point channel
with decoder-only side information) has been presented. If
compared to the performance of separation schemes of com-
parable complexity, the the performance of this new scheme
can be considered as very satisfactory. Moreover, we think
that the strategy we have proposed to take advantage of the
side information at the receiver can pave the way for future
research. Thus, the intuition says that lower distortions could
be achieved by designing analog mappings, different from the
point-to-point mappings [5, 8], that suit better in the proposed
strategy. Defining a nested structure with variable size of the
cells can be another possibility to reduce the distortion.
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