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ABSTRACT

We present a method to reconstruct an implicit hypersurface

of a N -dimensional vector space from a normal vector field

supposed to be unreliable and noisy. Either the surface bound-

ary or a point belonging to the surface is required. Assuming

that a basis is known in which the surface is explicit, our ap-

proach consists in an accurate and noise robust global opti-

mization technique based on a non linear partial derivative

equation relied on local dip. The key point is the expression

of the local dip in the new basis.

Index Terms— Surface reconstruction, partial derivative

equation, Poisson equation, local dip transformation, normal

vector field.

1. INTRODUCTION

This paper treats of a method dedicated to the reconstruction

of a N -dimensional vector space hypersurface. Either the sur-

face boundary or a point belonging to the surface is required.

We deal with a known dense vector field of normals orthogo-

nal to the surface, usually estimated in an orthonormal basis

over the entire N -dimensional data and supposed to be unre-

liable and noisy (see figure 1). Application scopes and nor-

mal vector field achievement methods are various. In a two-

dimensional (2-D) space, fingerprints can be reconstructed

from a set of known minutiae points [1]. In this case, the

normal vector field stems from the extrapolation of orienta-

tion vectors estimated at the minutiae points. In meteorology,

the method can be applied to sea surface temperature images

and satellite images to track eddies [2] and cyclones [3] or to

characterize their location more precisely than by an ellipse

[4] through a normal vector field resulting from a velocity

field. In a three-dimensional (3-D) space, seismic horizons

can be computed from a normal vector field estimated by a

gradient field principal component analysis [5].

Methods to reconstruct a surface from a normal vector

field are developed in literature. If a point belonging to the

surface is known, the more intuitive reconstruction way is to

track the normal vector field. In the 2-D case, a unique sur-

face can be computed by integrating the tangent vector ob-
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O

Fig. 1: A two-dimensional estimated normal vector field and an ex-

ample of an implicit hypersurface in basis (~x
1
, ~x

2
).

tained from the normal one. This method is carried out in [1],

combined with line integral convolution. If N is higher than

two, an infinite number of surfaces can be computed from the

(N -1)-dimensional tangent hyperplane. Nevertheless, the sur-

faces derive in case of noisy data. Active contour models, also

called snakes, are an other framework to delineate a surface

[6]. A model is initialized by a set of points which converge

to the surface by an energy minimization. No constraint such

as a point belonging to the surface or boundary conditions are

imposed in standard algorithms and noise robustness of the

method is extremely weak. In case of noisy data, level set

methods [7] can be efficient, but are complex to implement

and are limited to closed surfaces.

In this paper, we present a global approach to recon-

struct an implicit hypersurface of a N -dimensional vector

space. We consider the local dip resulting from the normal

vector field. Assuming that a basis is known in which the

surface is explicit, the surface is obtained by solving a (N -

1)-dimensional non linear partial derivative equation (PDE)

relied on the local dip expressed in the new basis. The PDE

approach was first introduced in a 3-D space by Lomask et

al. [5]. A Gauss-Newton method is carried out by an iterative

algorithm including the resolution of a Poisson equation.

This article is organized as follows: section 2 introduces

the explicit surface reconstruction algorithm, section 3 deals

with implicit surface reconstruction while the two last sec-

tions exhibit results on synthetic and real data in two and

three-dimensional spaces.
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2. EXPLICIT SURFACE RECONSTRUCTION

In a N -dimensional vector space VN associated to an or-

thonormal basis B = (~x
1
, ..., ~x

N
) with center O, let a

hypersurface be represented by an explicit function f defined

on a domain Ω by xN = f(x), where x = (x
1
, ..., x

N−1
).

The function f is connected to the tangent p of the local dip

in basis B by a PDE:

∀ x ∈ Ω, ∇f(x) = p

(

x, f(x)
)

, (1)

where ∇ denotes the gradient operator [5]. The local dip in

basis B gives the slope of the surface tangent hyperplane P

compared to the N -1 first vectors of B. For a point X of VN ,

the components pi of p are given by:

∀ i ∈ [[1, N − 1]], pi(X) = − ni(X)

n
N
(X)

, (2)

where ni is the ith component of the normal vector n (see

figure 2). The functions f and p are respectively considered

of class C2 and C1.

The surface is obtained by solving a constrained optimization

problem:

f = arg min
g∈C2

∫

Ω

∥

∥∇g(x)− p

(

x, g(x)
)∥

∥

2
dx. (3)

assuming that either the surface boundary or a point belong-

ing to the surface is known. Equation (3) is non linear because

p depends on f , thus an iterative algorithm is used to solve it

[5]. The surface is initialized with a function f
0

and the itera-

tive step is made of three parts : residual computation, update

term computation and updating.

• Residual computation:

∀ x ∈ Ω, rk(x) = ∇fk(x)− p

(

x, fk(x)
)

, (4)

where k denotes the iteration number.

• Update term computation:

δfk = arg min
g∈C2

∫

Ω

∥

∥∇g(x) + rk(x)
∥

∥

2
dx. (5)

The solution of equation (5) is obtained by solving a Pois-

son equation:

∆(δfk) = − div(rk), (6)

where ∆ denotes the Laplace operator and div is the diver-

gence vector operator.

If the surface boundary is known, the Poisson equation is

associated with boundary conditions:

∀ x ∈ ∂Ω, δf
0
(x) = f(x)− f

0
(x)

and δfk(x) = 0 ∀ k > 0,
(7)
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Fig. 2: Intersection of the surface f with the plane (~xi, ~xN
). For a

point X, the component pi of the tangent p of the local dip is given

by : pi(X) = tanΘi(X) = − ni(X)
nN (X)

.

where ∂Ω denotes the boundary of the domain Ω.

If a point P belonging to the surface is known, the Poisson

equation is associated with an “inner” condition:

δf
0
(xP) = f(xP)− f

0
(xP)

and δfk(x
P) = 0 ∀ k > 0,

(8)

where
(

xP , f(xP)
)

are the coordinates of P .

• Updating:

∀ x ∈ Ω, fk+1(x) = fk(x) + δfk(x). (9)

Convergence is assumed to be reached after a number K of

iterations.

3. IMPLICIT SURFACE RECONSTRUCTION

In this section, we deal with a hypersurface represented by an

implicit function f defined by f(x, xN ) = 0 in basis B. To re-

construct such a surface by a PDE approach, we assume that

there is an orthonormal basis By = (~y
1
, ..., ~y

N
) with cen-

ter Oy in which the surface can be represented by an explicit

function fy defined on a domain Ωy . By adding a subscript

x to the elements of the implicit basis B, each point of VN

is defined in basis Bx and By respectively by its coordinates

X = (x
1
, ..., x

N
) and Y = (y

1
, ..., y

N
). The change of basis

from Bx to By is defined by a bijective N -dimensional lin-

ear transformation F characterized by its invertible Jacobian

matrix JF whose inverse at a point Y is given by:

JF
−1(Y) =









∂x
1

∂y
1

(Y) · · · ∂x
1

∂y
N

(Y)

...
. . .

...
∂x

N

∂y
1

(Y) · · · ∂x
N

∂y
N

(Y)









. (10)
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In basis By , the surface is obtained by solving a PDE that

connects fy to the tangent py of the local dip:

∀ y ∈ Ωy, ∇fy(y) = py

(

y, fy(y)
)

, (11)

where y = (y
1
, ..., y

N−1
). Equation (11) is solved by the

algorithm presented in section 2. The local dip in basis By

gives the slope of the surface tangent hyperplane Py com-

pared to the N -1 first vectors of By. For a point Y, the

components py,i of py are relied to the surface normal vector

n and to the inverse transformation F
−1:

∀ i ∈ [[1, N − 1]],

py,i(Y) = −

N
∑

j=1

∂xj

∂yi
(Y).nj

(

F−1(Y)
)

N
∑

j=1

∂xj

∂y
N

(Y).nj

(

F−1(Y)
)

. (12)

Proof. Let us consider a point Y of VN and the vector py,i

which belongs to the intersection between the surface tan-

gent hyperplane Py and the plane (~yi, ~yN
) (see figure 2 by

replacing basis B by basis By). Obviously, the inverse trans-

formation of this vector F
−1(py,i) belongs to the surface

tangent hyperplane Px. Knowing the surface normal vector

n, the value py,i is therefore defined by the vector F−1(py,i)
which is orthogonal to n, i.e. the vector for which the dot

product between itself and n is zero.

For a displacement δyi along ~yi, the vector py,i and its

inverse transformation are respectively expressed in basis By

and Bx by:

py,i = δyi~yi + δyipy,i~yN
(13)

F
−1(py,i) =

N
∑

j=1

δxj~xj . (14)

The components of F−1(py,i) are given by a linear approxi-

mation of the function F
−1:

δxj ≈ Fj
−1(Y + py,i)− Fj

−1(Y)

≈ δyi
∂xj

∂yi
(Y) + δyipy,i

∂xj

∂y
N

(Y), (15)

where Fj
−1

is the jth component of F−1.

Taking the dot product between F
−1(py,i) and n equal to

zero gives then:

N
∑

j=1

(

∂xj

∂yi
(Y) + py,i

∂xj

∂y
N

(Y)

)

nj

(

F
−1(Y)

)

= 0, (16)

which corresponds to equation (12).

4. TWO-DIMENSIONAL APPLICATIONS

4.1. Synthetic data

The approach is firstly evaluated on a 256×256 synthetic 2-D

image depicting a positive logarithmic spiral (see figure 3).

The surface to be reconstructed is an isoline passing through

a point P assumed to be known. In a polar basis whose center

corresponds to the spiral center Oy , the surface equation is:

ρe(θ) = ρP eb(θ−θP ), (17)

where ρ and θ denote respectively the positive radial coordi-

nate and the angular coordinate while (θP , ρP ) are the coor-

dinates of P , e is the exponential function and b is a posi-

tive constant. The image is corrupted by an additive Gaussian

noise with zero mean to reach a signal-to-noise ratio of 25

dB before the normal vector field is estimated by a standard

gradient field principal component analysis (PCA). Several

basis By in which the surface is explicit can be chosen for the

reconstruction, like the polar basis, the positive logarithmic

spiral basis or the positive arithmetic spiral basis with center

Oy carried out in the example presented below. An arithmetic

spiral is given in a polar basis by a linear function defined by

a positive slope a:

ρs(θ) = aθ, (18)

where θ is positive. In the arithmetic spiral basis, each point

is determined by an angle θ and a value a which corresponds

to the slope of the linear function passing through the point.

The coordinates (θ, a) are relied on the Cartesian coordinates

(x
1
, x

2
) by:

{

θ = arctan(x
1
− xO

1
, x

2
− xO

2
) + 2πL

1

a =

√
(x

1
−xO

1
)2+(x

2
−xO

2
)2

θ

, (19)

where (xO
1
, xO

2
) are the Cartesian coordinates of Oy and L

1
is

a positive constant. The function arctan(x
1
, x

2
) gives the arc

tangent of
x
2

x
1

taking into account which quadrant the point

(x
1
, x

2
) is in while the value of L

1
has to be chosen such as

the domain Ωy is included in [0,+∞[. The inverse Jacobian

matrix of the Cartesian to arithmetic spiral basis transforma-

tion at point (θ, a) is:

[

a(cos θ − θ sin θ) θ cos θ
a(sin θ + θ cos θ) θ sin θ

]

. (20)

In the arithmetic spiral basis, the mathematic model of the

surface passing through P whose coordinates are (θP , aP ) is

given by:

fy,th(θ) = aP
θP

θ
eb(θ−θP ). (21)

In the example shown in figure 3, the domain Ωy is an

interval whose center is θP and whose length is 2πL
2

with

L
2

= 6 while L
1

= 4 and b = 0.05. The reconstruction algo-

rithm is initialized by a constant function fy,0 equal to aP ,
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(a) Model F−1(fy,th) (b) Integration F
−1(fy,int)

(c) Initialization F
−1(fy,0) (d) Surface F

−1(fy)

Fig. 3: Surface reconstruction from a known point (represented by a

red disk) on a 2-D synthetic image. The red cross corresponds to the

arithmetic spiral basis center Oy .

represented in the Cartesian basis by figure 3c. Thirty itera-

tions are required to observe convergence with 2,001 discrete

points. The reconstructed surface fy (see figure 3d) has to

be compared with the mathematic model fy,th (see figure 3a)

and the surface obtained by the orientation vector field inte-

gration fy,int (see figure 3b).

In the arithmetic spiral basis, the mathematic model and

the reconstructed surface are almost superimposed while the

orientation vector field integration diverges when moving

away from P in both directions (see figure 4). In the Carte-

sian basis, the Euclidean distance D(fy) computed between

the mathematic model and the reconstructed surface for each

value of θ is extremely weak (< 0.5 pixel, see figure 5), which

proves precision and noise robustness of our method. On the

contrary, the distance D(fy,int) between the mathematic

model and the orientation vector field integration increases

extremely quickly when moving away from P .

4.2. Real cyclone data

The approach is secondly carried out on a real cyclone satel-

lite image. A cyclone is an area of closed circular fluid motion

rotating in the same direction as the Earth and appearing in

low-pressure area. In climate change prediction, recent works

have been dedicated to cyclone detection and tracking [3] [4].

Here, we propose to reconstruct a surface corresponding to

the cyclone location from an estimation of the cyclone center
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Fig. 4: Surface comparisons in

the arithmetic spiral basis.
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Fig. 5: Euclidean distances in

the Cartesian basis.

Oy and the knowledge of the two boundary points P
1

and P
2
.

As previously, the normal vector field is estimated by a PCA.

The cyclone represented in figure 6 shows an approximately

logarithmic spiral pattern, so a positive arithmetic spiral basis

with center Oy can be used in the reconstruction method. De-

noting (θPi , aPi) the coordinates of the point Pi, the surface

domain is delineated by θP1 and θP2 and its length is taken

between 2πL
2

and 2π(L
2
+ 1), where L

2
is a positive con-

stant. The algorithm is initialized by a constant function fy,0
equal to the mean value of aP1 and aP2 . By fixing L

1
= 4 and

L
2

= 2, thirty iterations are required to observe convergence

with 1,001 discrete points.

Fig. 6: Surface reconstruction from the boundary points knowledge

(represented by the red disks) on a 2-D cyclone data. The red cross

corresponds to the arithmetic spiral basis center Oy .

The reconstructed surface depicted in figure 6 corre-

sponds to the observed cyclone pattern. The integration of

the orientation vector field method can not take into account

two points and is obviously not suitable. Furthermore, the

integration starting from P
1

or P
2

leads to innacurate results.

5. THREE-DIMENSIONAL APPLICATION

The approach is also tested on a 128×128×128 synthetic 3-

D image depicting a tri-axial ellipsoid (see figure 7). The

surface to be reconstructed is an entire isoline E or a part of it

passing through a point P assumed to be known. The image

is corrupted as described in section 4.1. An intuitive basis By

in which the surface is explicit is the spherical basis whose
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center Oy has to be chosen inside E. Each point is determined

in By by two angles θ and φ included respectively in [−π, π]
and [0, π] and by a positive value ρ relied on the Cartesian

coordinates (x
1
, x

2
, x

3
) by:





y
1

y
2

y
3



 = R.





x
1
− xO

1

x
2
− xO

2

x
3
− xO

3





and











θ = arctan(y
1
, y

2
)

φ = arccos(
y
3√

y2

1
+y2

2
+y2

3

)

ρ =
√

y2
1
+ y2

2
+ y2

3

, (22)

where (xO
1
, xO

2
, xO

3
) are the Cartesian coordinates of Oy and

R is a 3×3 matrix characterizing a 3-D rotation of the Carte-

sian basis. The inverse Jacobian matrix of the Cartesian to By

basis transformation at point (θ, φ, ρ) is then:

R−1.





−ρ sin θ sinφ ρ cos θ cosφ cos θ sinφ
ρ cos θ sinφ ρ sin θ cosφ sin θ sinφ

0 −ρ sinφ cosφ



 , (23)

where R−1 is the inverse matrix of R. In the example pre-

sented below, we reconstruct a part of E defined on a domain

Ω′ corresponding to the rectangle [−π, π]× [0, π−φ
0
], where

φ
0

takes its value in ]0, π[. By choosing Oy as the center of

the ellipsoid, the location of the non-reconstructed part of E

depends exclusively on the rotation R. The reconstruction

algorithm is initialized by a constant function fy,0 passing

through P , which corresponds to a part of a sphere in the

Cartesian basis. Ten iterations are required to observe con-

vergence with 101 discrete points for θ and 51 discrete points

for φ. The reconstructed surfaces for two different rotations

and values of φ
0

are depicted in figure 7. They are almost

superimposed with the mathematic model. In the Cartesian

basis, the Euclidean distance computed between each recon-

structed surface and the mathematic model for each value of

pair (θ, φ) is extremely weak (< 0.3 pixel).

6. CONCLUSION

We have developed a method to reconstruct an implicit hy-

persurface of a N -dimensional vector space from a normal

vector field generally supposed to be unreliable and noisy. Ei-

ther the surface boundary or a point belonging to the surface

is required. Our approach consists in a global optimization

technique whose key point is the expression of the local dip

in a basis in which the surface is explicit. The obtained results

on both synthetic and real data in 2-D and 3-D prove accuracy

and noise robustness of the method, unlike to those obtained

by an orientation vector field integration method.

(a) Rotation R1, φ
0
= π

9 .

(b) Rotation R2, φ
0
= π

5 .

Fig. 7: Surface reconstruction from a known point (represented by

a red sphere) on a 3-D synthetic image for two different rotations

R and values of φ
0
. The 2-D images on the right show the cross-

sections depicted by the blue frames in the 3-D images.
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