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ABSTRACT

The Thomson multitaper estimator has become successful for
spectrum analysis in many application areas. From the aspect
of efficient implementation, the so called Welch or WOSA-
Weighted Overlap Segment Averaging, has advantages. In the
Welch estimator, the same, time-shifted, window is applied to
the data-sequence. In this submission, the aim is to find a
Welch estimator structure which has a similar performance as
the Thomson multitaper estimator. Such a estimator might
be more advantageous from real-time computation aspects as
the spectra can be estimated when data samples are available
and a running average will produce the subsequent averaged
spectra. The approach is to restructure the corresponding co-
variance matrix of the Thomson estimator to the structure of
a Welch estimator and to find a mean square error approxi-
mation of the covariance matrix. The resulting window of the
Welch estimator should however fulfill the usual properties
of a spectrum estimator, such as low-pass structure and well
suppressed sidelobes.

Index Terms— Spectrum, Multitaper, Multiple windows,
Thomson, Welch, WOSA

1. INTRODUCTION

The concept of Multiple Windows or Multitapers was in-
vented by Thomson, [1] where the windows are the Discrete
Prolate Spheroidal Sequences (DPSS), developed by Slepian
and Pollack, which is described in a number of famous papers
ending with [2]. The main idea of multitapers is to reduce
the variance of the periodogram by averaging several uncor-
related periodograms where the same data sequence is used
for all periodograms but the shape of the window change in a
way that give uncorrelated periodograms and thereby reduced
variance. However, multitapers were actually used much ear-
lier in the form of one window shifted in time, the Welch
method or WOSA (Weighted Overlap Segmented Averaging)
by Welch, [3, 4]. The time-shifted window by Welch give
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uncorrelated periodograms as the time-shifted window over-
lap different data sequences, although the same window is
used. Bronez shows that the Thomson method outperforms
the Welch method in terms of leakage, resolution and vari-
ance, [5]. The multitaper estimators are used in many ap-
plications but still the simple idea of one time-shifted win-
dow of the Welch method is the most applied and is the most
advantageous from real-time implementation aspects. Other
suggestions of methods using and optimizing the time-shift
of one window are e.g., the circularly shifted taper of the
time-division multiple window method (TDMW) by Clark,
[6], which has a similar performance as the Thomson esti-
mator using just one circularly time-shifted window and all
data samples. Recently, an improved Welch estimator are pro-
posed using circular time-shifts in [7].

In this submission we rely on the usual structure of the
Welch estimator which might be more advantageous from
real-time computation aspects as the spectra can be estimated
when data samples are available and a running average will
produce the subsequent averaged spectra. The aim is to find
a window for the time-shifted structure so that the resulting
Welch-structure estimator has a similar performance as the
Thomson estimator. The resulting window should fulfill the
usual properties of a spectrum estimator, such as low-pass
structure and well suppressed sidelobes.

In section 2 the estimation of the Thomson multitapers is
presented. Section 3 gives the computation of the approxima-
tive Welch-structure estimator. In section 4, the evaluation is
presented and the paper is concluded in section 5.

2. MULTITAPER SPECTRUM ANALYSIS

The real valued stationary discrete-time random process,
x(n), is given. We would like to estimate the spectrum
Sx(f), from N samples x = [x(0) . . . x(N − 1)]T of the
process by using the estimator

Ŝx(f) =
1

K

K∑
k=1

Ŝk(f) (1)
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where

Ŝk(f) =|
N−1∑
n=0

x(n)hk(n)e
−i2πfn |2 . (2)

Equation (2) is a windowed periodogram obtained by using
the data window
hk = [hk(0) . . . hk(N − 1)]T . An average of K peri-
odograms provides the multitaper estimate in Eq. (1).

2.1. The Thomson estimator

The Thomson multitaper estimation method can be consid-
ered to be a filtering procedure of white noise in a filter bank
of FIR-filters of pre-defined bandwidth B. The impulse re-
sponses of the subfilters are hk and the corresponding fre-
quency functions are Hk(f) = hTk · φ(f), where φ(f) =
[1 e−i2πf . . . e−i2π(N−1)f ]T . The white noise spectrum is
Sw(f) = 1. Given the input signal x(n), the power of the
output signal within the frequency interval (−B/2, B/2) is

PB =

∫ B/2

−B/2
|Hk(f)|2Sw(f)df

= hTk

∫ B/2

−B/2
φ(f)Sw(f)φ

H(f)dfhk

= hTk

∫ 1/2

−1/2
φ(f)SB(f)φ

H(f)dfhk

= hTkRBhk, (3)

where SB(f) is equal to Sw(f) = 1 in the band (−B/2, B/2)
and zero for all other frequency values. The Toeplitz (N×N)
covariance matrix RB has the elements
rB(l) =

∫∞
−∞ SB(f)e

−i2πlfdf = Bsinc(πBl), 0 ≤ |l| ≤
N − 1, where sinc(x) = sin(x)

x . The KT window functions,
hk, which maximize PB are used as multitapers and the op-
timization is performed subject to total power of a window
equals one, i.e.,

Ptot =

∫ 1/2

−1/2
|Hk(f)|2df = hTk hk = 1.

The solution with respect to hk is the set of eigenvectors of
the eigenvalue problem

RBqk = λkqk, k = 1 . . . N. (4)

The solution is found as the Discrete Prolate Spheroidal Se-
quences (DPSS). It is also shown that the number of eigen-
values KT close to one, which is related to the predefined
frequency bandwidth B and window length N as

KT ≈ N ·B − 2.

Fig. 1. The resulting covariance matrix Rth of the Thomson
method with N = 256, B = 0.04 and KT = 8.

3. A THOMSON-WELCH STRUCTURE
APPROXIMATION

One way to find an approximative Thomson estimator with
the structure of a Welch estimator is to approximate the co-
variance matrix of the Thomson estimator with a similar one
with the appropriate structure of a time-shifted window.

The covariance matrix of the Thomson estimator is found
as

Rth =

KT∑
k=1

λkqkq
T
k . (5)

An example of the covariance matrix of the Thomson estima-
tor is seen in Figure 1. The covariance matrix can also be
written as

Rth = QΛ2QT = AAT , (6)

with A = QΛ and

Q = [q1 . . .qKT
] ,

Λ = diag
[√

λ1 . . .
√
λKT

]
. (7)

The covariance matrix of the Thomson-Welch-approximation
is found as

RTW = HHT , (8)

where
H = [h1h2 . . .hKW

] , (9)

with hk, k = 1 . . . KW defined from

hk = [ 0 . . . 0︸ ︷︷ ︸
(k−1)LW

hT
(N−(k+1))LW︷ ︸︸ ︷

0 . . . 0 ]T , k = 1 . . . KW ,

(10)
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where h = [h(0) . . . h(NW − 1)]T is the unknown window
to be estimated. The number of windows KW of length NW
is the largest integer that fulfill KW ≤ N−NW

LW
+ 1, where

LW is the time-shift. The parameters KW , LW and NW are
assumed to be pre-defined.

A number of important criteria of the window h can be
found, e.g., smoothness and low sidelobes in the frequency
plane. Therefore a straightforward optimization might not al-
ways give a desirable result. The approach taken here is based
on finding a new (NW ×KTKW ) matrix B from submatrices
of A according to

B = [B1 B2 . . . BKW
] , (11)

where

Bk =


a(k−1)LW+1,1 . . . a(k−1)LW+1,KT

a(k−1)LW+2,1 . . . a(k−1)LW+2,KT

...
...

a(k−1)LW+NW ,1 . . . a(k−1)LW+NW ,KT

 ,
and an,m are the elements of the matrix A. Studying the
structure of B show that if all columns would be equal to h,
the resulting estimator would be of Welch-structure. This is of
course just possible in the non-overlapping window case, i.e.,
LW = NW . However, the elements of A and thereby also
B are specified and to find a possible approximative window
vector h, the singular value decomposition of B are computed
as

B = USVT , (12)

and the firstKB singular vectors of the (NW×NW ) matrix U
are used as basis functions for further analysis. These singular
vectors will contain the most of the common structure of the
vectors in the matrix B and could possibly serve as a basis in
the optimization. Then the aim is to find a final window as

h =

KB∑
k=1

αkuk, (13)

where uk, k = 1 . . .KB , are the singular vectors of the ma-
trix U and αk parameters to be optimized. The optimization
is performed using the mean square error of the correspond-
ing covariance matrices,

min
αk

N∑
n=1

N∑
m=1

(rth(n,m)− rTW (n,m))2, (14)

for k = 1 . . . KB , where rth(n,m) and rTW (n,m) are
the elements of the matrices Rth and RTW respectively. For
known parameters αk, the final window for the time-shifted
approximation is computed from Eq. (13). For the compu-
tation, the Nelder-Mead simplex method of Matlab (fmin-
search) with equal initial starting point αk = 1/KB is used.
Further investigations are needed to evaluate the convergence
and possible local minima.
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Fig. 2. The window h computed for different parameter set-
tings: (Case 1) NW = 64, LW = 16 and KW = 13, (Case 2)
NW = 96, LW = 16 and KW = 11, (Case 3) NW = 128,
LW = 16 and KW = 9.

4. EVALUATION

In the examples and evaluations N = 256, B = 0.04 and
KT = 8, are used for the Thomson method. We show three
cases of pre-defined parameter settings for approximation
where the window h is computed for different parameter set-
tings: (1)NW = 64, LW = 16 andKW = 13, (2)NW = 96,
LW = 16 and KW = 11, (3) NW = 128, LW = 16 and
KW = 9. The resulting windows are presented in Figure 2.
We see that the resulting window will have a better perfor-
mance regarding leakage for a larger value of NW . This is
natural as it is difficult to fulfill the suppression with a shorter
window. Some similarity of the shape can be seen, especially
for the case 2 compared to case 3, where it seems as the edges
of case 3 have been cut for the shorter window in case 2.
The resulting covariance matrices RTW are computed and
are displayed in Figures 3, 4 and 5, where we can see that
the structure of Rth is essentially kept for the diagonal and
sub-diagonal elements.

4.1. Examples

The performance is computed for three different cases of
processes, white Gaussian noise, a band-pass process and
an AR(4)-process where we compare the result of the orig-
inal Thomson estimator with the approximative estimators.
Note that we not compare which estimator that has the best
performance for the specific process, we just compare the
performance with the original Thomson estimator. For the
white noise spectrum, the process covariance matrix Rx = I
and for the other processes the process covariance matrices
are given from the corresponding spectra. The bandpass pro-
cess is computed from the FIR-filter of order 100 and cut-off
frequencies 0.1 and 0.2 using a Hamming-window and the
AR(4)-process are given by the poles p1,2 = 0.95e±i2π0.1
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Fig. 3. The resulting covariance matrix RTW for case 1 with
parameters NW = 64, LW = 16 and KW = 13.

Fig. 4. The resulting covariance matrix RTW for case 2 with
parameters NW = 96, LW = 16 and KW = 11.

Fig. 5. The resulting covariance matrix RTW for case 3 with
parameters NW = 128, LW = 16 and KW = 9.

and p3,4 = 0.95e±i2π0.2. The expected value of the spectrum
estimate is computed as

E[Ŝx(f)] = E[
1

K

K∑
k=1

hTkΦH(f)xxTΦ(f)hk]

=
1

K

K∑
k=1

hTkΦH(f)RxΦ(f)hk, (15)

where Φ(f) = diag[1 e−i2πf . . . e−i2π(N−1)f ] is the
Fourier transform matrix. The variance of the spectrum
estimate is given by all combinations of the different peri-
odogram covariances,

Variance Ŝx(f) =
1

K2

K∑
k=1

K∑
l=1

cov(Ŝk(f)Ŝl(f)). (16)

Denoting hTkΦH(f)x = Ck and assuming x to be Gaussian
gives the covariance as

cov(Ŝk(f)Ŝl(f)) = cov(CkCHk ClC
H
l )

= E[CHk CkClC
H
l ]− E[CHk Ck]E[ClC

H
l ]

= E[CHk Cl]E[CkC
H
l ] + E[CHk C

H
l ]E[CkCl]

≈ |hTkΦH(f)RxΦ(f)hl|2 (17)

according to Walden et al, [8].
Comparing the results for the white Gaussian noise

case, the original Thomson method gives the expected value
E[Ŝx(f)] = 1 where the approximative method for the differ-
ent cases give: (1) 0.906, (2) 0.837, (3) 0.809. The variance
of the Thomson method is Variance Ŝx(f) = 1/KT = 0.125
where the approximative method for the different cases give:
(1) 0.101, (2) 0.113, (3) 0.143. The smaller variance of course
comes from the large number of time-shifted windows, e.g.,
case 1, where KW = 13 and case 2, where KW = 11.

For the bandpass process, the results of the expected case
3 give the best sidelobe suppression (black line) compared
to the Thomson estimator (blue line), see Figure 6a). The
variance performance is similar to the white noise case.

For the AR(4)-process, all methods perform very simi-
lar to the Thomson estimator, see Figure 7. The best per-
formance, studying the expected value is given from case 1
(green line) where the performance most similar to the Thom-
son method is given by the approximative method of case 2
(red line) or possibly case 3 (black line). This is the typical
trade-off, when the initial parameters are chosen, between the
window length NW and the number of windows KW .

5. CONCLUSION

In this submission an approximative Welch-structure spec-
trum estimator of the Thomson multitaper method is pro-
posed. The window-length and number of windows of the
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Fig. 6. A comparison of the a) expected values b) vari-
ances for the three cases of the approximative method and
the Thomson estimator for a band-pass process.
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Fig. 7. A comparison of the a) expected values b) variances
(normalized with true spectrum for a better view) for the three
cases of the approximative method and the Thomson estima-
tor for an AR(4)-process.

Welch-estimator are specified and the window, to be shifted,
is computed from the mean square error of the covariance
matrices of the proposed method and the Thomson estima-
tor. Such an estimator might be more advantageous from
real-time computation aspects as the spectra can be estimated
when data samples are available and a running average will
produce the subsequent averaged spectra. The performance
of the new estimator is compared to the Thomson estimator
for some examples.
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