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ABSTRACT

Space Time Adaptive Processing (STAP) is a two-dimensional
adaptive filtering technique which uses jointly temporal and
spatial dimensions to suppress disturbance. Disturbance con-
tains both the clutter arriving from signal backscattering of
the ground and the thermal noise. In practical cases, the
STAP clutter can be considered to have a low rank structure,
allowing to derive a low rank vector STAP filter, based on
the projector onto the clutter subspace. In order to process
new STAP applications (MIMO STAP, polarimetric STAP
. . . ) and keeping the multidimensional structure, we propose
in this paper a new low-rank tensor STAP filter based on a
generalization of the Higher Order Singular Value Decompo-
sition (HOSVD): the Cross-HOSVDs. This decomposition
uses at the same time the simple (like polarimetric) and the
combined information (for example spatio-temporal). We
apply the filter on polarimetric STAP and compute the SNR
Loss with Monte-Carlo simulations.

1. INTRODUCTION

Space Time Adaptive Processing (STAP) is technique used in
airborne phased array radar to detect moving target embed-
ded in an interference background such as jamming or strong
clutter [1]. While conventional radars are capable of detect-
ing targets both in the time domain related to target range
and in the frequency domain related to target velocity, STAP
uses an additional domain (space) related to the target angu-
lar localization. The consequence is a two-dimensional adap-
tive filtering technique which uses jointly temporal and spa-
tial dimensions to suppress disturbances and to improve tar-
get detection. The disturbance contains both the clutter arriv-
ing from signal backscattering of the ground and the thermal
noise resulting from the sensors noise. From the Brennan’s
rule formula [2], the STAP clutter can be considered to have a
low rank structure. Using this assumption, a low rank vector
STAP filter is derived [3, 4] based on the projector onto the
subspace orthogonal to the clutter.

The STAP data are collected as a data cube, but they are
usually folded as vectors to use the space-time information.

With new STAP applications like MIMO STAP or polari-
metric STAP [5], the generalization of the classic filters to
multidimensional configurations arises. A possible solution
consists in keeping the multidimensional structure and in ex-
tending the classic filters with multilinear algebra [6, 7] as
it is done in [8]. Using the low-rank structure of the clut-
ter, the HOSVD [9] (High Order Singular Value Decomposi-
tion) seems natural to find the tensor projector of the clutter
subspace. However, we concluded in [10], that this decom-
position is not appropriated because the spatio-temporal di-
mension is not considered (only the spatial and temporal di-
mensions separately are seen by HOSVD). In this paper, we
propose a set of decompositions the cross-HOSVDs, a gen-
eralization of the HOSVD which can use single (e.g., spatial
or temporal) information and combined (like spatio-temporal)
information. Based on these new decompositions, we propose
a new multidimensional Low-rank STAP filter, which remove
the clutter while keeping the target response even if it is lo-
cated near the clutter. We apply our new filter on polarimetric
STAP and we show the interest of our approach by computing
the SNR Loss with Monte-Carlo simulations.

The following convention is adopted: scalars are denoted
as italic letters, vectors as lower-case bold-face letters, matri-
ces as bold-face capitals, and tensors are written as bold-face
calligraphic letters. We use the superscripts H , for Hermitian
transposition and ∗, for complex conjugation.

2. SOME MULTILINEAR ALGEBRA TOOLS

This section contains the main multilinear algebra tools used
in this paper. Let A, B ∈ CI1×I2×I3 , two 3-dimensional
tensors and let ai1i2i3 , bi1i2i3 their elements. We will use the
following operators; for more details, especially the case of
n-order tensors, we refer the reader to [6, 9].

2.1. Unfolding

Let us start with 2 unfolding operators, which arrange the el-
ements of a tensor in a matrix or a vector:

• vector: vec transforms a tensor A into a vector,
vec(A) ∈ CI1I2I3 . vec−1 is the inverse operator.

20th European Signal Processing Conference (EUSIPCO 2012) Bucharest, Romania, August 27 - 31, 2012

© EURASIP, 2012  -  ISSN 2076-1465 1324



• matrix: this operator transforms the tensor A into a
matrix. For example, [A]1 ∈ CI1×I2I3 and [A]1,2 ∈
CI1I2×I3 .

• square matrix: this operator transforms the tensor R ∈
CI1×I2×I3×I1×I2×I3 into a square matrix, SqMat(R) ∈
CI1I2I3×I1I2I3 . SqMat−1 is the inverse operator.

2.2. Products

• scalar product : < A,B >=∑
i1

∑
i2

∑
i3
b∗i1i2i3

ai1i2i3 = vec(B)Hvec(A)

• n-mode product : E ∈ CJ2×I2

(A×2 E)i1j2i3 =
∑

i2
ai1i2i3ej2i2

• outer product : E = A ◦ B ∈ CI1×...×IN×J1×...×JN

avec ei1...iN j1...jM
= ai1...iN

.bj1...jM

2.3. HOSVD
Definition One of the extension of the SVD to the tensor
case is given by the HOSVD [9]. A tensor A can be decom-
posed as follows:

A = K×1 U(1) ×2 U(2) ×3 U(3), (1)

where ∀n, U(n) ∈ CIn×In is an orthonormal matrix and
where K ∈ CI1×I2×I3 is the core tensor, which satisfies the
all-orthogonality conditions [9]. The matrix U(n) is given by
the left singular matrix of the n-dimension unfolding tensor,
[A]n.

Low-rank approximation Let us introduce A = Ac +A0

where Ac is a (r1, r2, r3) low rank tensor and where rk =
rank([Ac]k) < Ik, for k = 1, 2, 3. An approximation of A0
is given by [7, 8]:

A0 ≈ A×1 U
(1)
0 U

(1)H
0 ×2 U

(2)
0 U

(2)H
0 ×3 U

(3)
0 U

(3)H
0 , (2)

with U(n)
0 = [u(n)

rn+1 . . .u
(n)
In

]. The truncation is a correct
approximation in most cases, but sometimes the use of an al-
ternating least squares algorithm is necessary for an optimal
result [7].

2.4. A new tensor product
The HOSVD mainly relies on the n-mode product. This im-
plies that all dimensions are separately taken into account.
But, in several multidimensional applications, the dimensions
can be strongly linked and in such a case, it is essential to
consider "cross" information (e.g. the spatio-temporal infor-
mation for the problem under study). Then, in order to gen-
eralize the HOSVD in the following of the paper, we have to
extend the n-mode product to multiply a tensor with a matrix
along several dimensions. Let us introduce D ∈ CI1I2×I1I2 a
square matrix. For example, the 1, 2-mode product, denoted
×1,2, is defined by:

A = B×1,2 D ⇐⇒ [A]1,2 = D[B]1,2, (3)

(A)i1i2i3 =
X
n

X
m

anmi3d(i1+(i2−1)I1)(n+(m−1)I1) (4)

2.5. Covariance Tensor

• Let V ∈ CI1×I2×I3 a random 3-order tensor

• R ∈ CI1×I2×I3×I1×I2×I3 the Covariance Tensor is de-
fined as :

R = E [V ◦ V∗] (5)

• Let Zk ∈ CI1×I2×I3 , K snapshots of V

• By analogy with the Sample Covariance Matrix (SCM),
R̂ ∈ CI1×I2×I3×I1×I2×I3 , the Sample Covariance
Tensor (SCT) is defined as :

R̂ =
1

K

KX
k=1

Zk ◦ Z∗k (6)

2.6. Cross HOSVDs

Definition Let H ∈ CI1,I2,...,IP , a P -order tensor. We de-
note A = {I1, . . . , IP } the set of the dimensions and Al a
subset of A (for example {I1, I2}). We called Cross-HOSVD,
every decompositions which satisfies:

H = KA1/.../AL
×A1 U(A1) . . .×AL

U(AL), L ≤ P,
A1 ∪ . . . ∪ AL = A,
A1 ∩ . . . ∩ AL = ∅, (7)

where U(Al) is the left singular matrix given by the SVD of
[H]Al

. The properties of those decompositions will be discuss
in a future paper.

This decomposition allows to combine dimensions in or-
der to enhance the subspace estimation (according to the ap-
plication). For clarity we consider the case of R, a 6-order
covariance tensor which will be used for the derivation of our
STAP filter. This tensor may be decomposed as follows:

R = G1/2/3 ×1 U(1) ×2 U(2) ×3 U(3)

×4U
(1)H ×5 U(2)H ×6 U(3)H

= G1,2/3 ×1,2 U(1,2) ×3 U(3) ×4,5 U(1,2)H ×6 U(3)H

= G1/2,3 ×1 U(1) ×2,3 U(2,3) ×4 U(1)H ×5,6 U(2,3)H

= G1,3/2 ×1,3 U(1,3) ×2 U(2) ×4,6 U(1,3)H ×5 U(2)H

= G1,2,3 ×1,2,3 U(1,2,3) ×4,5,6 U(1,2,3)H (8)

The covariance tensor has a symetric structure which ex-
plains the symmetry of the decompositions. We see the
classic HOSVD is included in cross-HOSVDs. We do not
mention all the decompositions which satisfy the condition,
but we focus on those which are useful to build a projector
onto the clutter.

Low-rank approximation Let us introduce H = Hc +
H0 where Hc is a low rank tensor. We denote rAl

=
rank([Hc]Al

). By analogy with the HOSVD case, we as-
sume an approximation of H0 is given by:

H0 ≈H×A1 U
(A1)
0 U

(A1)H
0 . . .×AL

U
(AL)
0 U

(AL)H
0 (9)

with U(Al)
0 = [u(Al)

rAl
+1 . . .u

(Al)

size(U(Al))
]. We assume, in this

paper, the truncation is a correct approximation. The low-
rank approximation will also be studied in a future paper.
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3. STAP

This section is devoted to the STAP application. First we sum
up the low rank vector STAP model and main results. Then,
we propose a tensor approach to process multidimensional
and especially polarimetric STAP data and we will show the
analogy with the vectorial approach.

3.1. Classic STAP filter

We assume that the target is present in one cell, p, while the
other cells contain only noise. Typically, the radar receiver
consists in an array of N antenna elements processing M
pulses in a coherent processing interval. We have K observa-
tions, corresponding to the K cells. The target is completely
characterized by its speed v, and its angular position θ. Usu-
ally the data,x, xk, are processed as NM vectors. The prob-
lem of detecting a complex known signal s corrupted by an
additive disturbance d in an observation x can be formulated
as follows:

x = αs + d , (10)

xk = dk k ∈ [1,K], (11)

where s is a complex steering vector depending on v and θ [1]
and α the target attenuation term. We assume that the dk’s
and d are independent and share the same statistical distribu-
tion. Moreover dk, d is decomposed as the sum of a low-rank
Gaussian clutter (according to the Brennan’s rule [2]), ck, and
a white Gaussian noise nk :

d = c + n (12)

dk = ck + nk, (13)

where n,nk ∼ CN (0, σ2IMN ) and where c, ck ∼ CN (0,Rc).
Consequently, d,dk ∼ CN (0,R), where R = Rc+σ2IMN .
Usually R is unknown and has to be estimated. We de-
note R̂, its estimation. Using the equations (16), (17) and
(13), the low-rank vector STAP filter is derived in 3 steps.
First, Û0 , the orthogonal clutter subspace is estimated:
Û0 = [ur+1 . . .uNM ], where ui are the (NM − r)-last
eigenvectors of R̂ (r is the rank of R, obtained with the
Brennan’s rule). Then the clutter is removed:

ÛH
0 x = αÛH

0 s + ÛH
0 c + ÛH

0 n

= αÛH
0 s + ÛH

0 n (14)

Finally the low-rank vector STAP filter is classically given
by [3, 4] :

ŵlr = Û0Û
H
0 s, (15)

3.2. Tensor Model

In this section, we assume the data are processed as 3-order
tensor, denoted Xk ∈ CN×M×P (where P = 3 in the case
of polarimetric STAP) but all results can easily be extended
to others N -dimensional STAP. The problem consists in de-
tecting a complex known signal S corrupted by an additive
disturbance D in an observation X:

X = αS + D (16)

Xk = Dk k ∈ [1,K], (17)

where S is a complex steering tensor depending on v and
θ [1]. We assume that the Dk’s are independent and share

the same statistical distribution. Moreover, we assume that
Dk is decomposed as the sum of a low-rank Gaussian clut-
ter (this assumption will be verified in the next section), Ck,
and a white Gaussian noise Nk: Dk = Ck + Nk, where
Nk ∼ CN (0, σ2I) and where Ck ∼ CN (0,R). Conse-
quently, Dk ∼ CN (0,R), where R = Rc + σ2IMN . R

is unknown but can be estimated by the SCT, R̂.

3.3. Low-rank tensor STAP filter

We propose to derive a low-rank tensor STAP filter in 3 steps.
First we decompose R̂ with the Cross-HOSVD to estimate the
clutter subspace. Then, using the low-rank approximation, a
projector, which remove the clutter, is calculated. At last the
corresponding filter is proposed.

• By analogy to the vector case, where the filter is ob-
tained from the SVD of the data, we first propose to
use the cross HOSVD on the estimate covariance ma-
trix R̂:

R̂ = KA1/.../A2L
×A1 Û(A1) . . .×AL

Û(AL)

×AL+1Û
(A1)H . . .×A2L) Û(AL)H (18)

• In order to apply the low-rank approximation, rA1 , . . . ,
rAL

(rAl
= rank([R]Al

)) have to be estimated.

• The clutter C can be removed by the following tensor
projector:

X′(A1/.../AL) = X×A1 Û
(A1)
0 Û

(A1)H
0 . . .×AL

Û
(AL)
0 Û

(AL)H
0

= S′(A1/.../AL) + N′(A1/.../AL), (19)

• Using the projector given by (19), the problem is then to
detect a complex tensor signal S′ disturbed by a white
gaussian noise N′. The optimal filter in this case is
known [11]:

Ŵlr(A1/.../AL) = S×A1 Û
(A1)
0 Û

(A1)H
0 . . .×AL

Û
(AL)
0 Û

(AL)H
0

= S′(A1/.../AL) (20)

We see the analogy with the vector case of Eq. (15).
The filter output is given by:

y = | < Ŵlr(A1/.../AL),X
′
(A1/.../AL) > | (21)

4. APPLICATION TO POLARIMETRIC STAP

4.1. Model

This section contains the model of the polarimetric STAP. We
first propose a vectorial model and then we show its exten-
sion to the tensor case. This model is adapted from [5], we
assume the antenna elements can emit and receive in 3 po-
larimatric channels (HH, VV, HV). The polarimetric STAP
data are built, concatenating the 3 polarimetric channels. The
polarimetric steering vector, s(θ, v) is built as follows:

s(θ, v) =

0@ sHH(θ, v)
αV V sHH(θ, v)
αV HsHH(θ, v)

1A , (22)

1326



where sHH(θ, v) is the 2D classic steering vector [1] and
αV V , αV H two complex coefficients. We assume the polari-
metric properties of the target are known.

The covariance matrix of the clutter, Rpc ∈ C3MN×3MN

is given by:

Rpc =

0@ Rc ρ
√
γV V Rc 0

ρ∗
√
γV V Rc γV V Rc 0
0 0 γV H Rc

1A , (23)

where Rc ∈ CMN×MN is the covariance matrix of the HH
channel clutter, build as the 2D classic clutter [1]. γV V , γV V

and γV V are three coefficients relative to the nature of the
ground and ρ is the correlation coefficient between HH and
VV. The low-rank structure of the clutter is kept.

Using the vectorial model and the inverse unfolding given
in 2.1, X,S,N ∈ CM×N×3 and R ∈ CM×N×3×M×N×3 are
given by:

S(θ, v) = vec−1(s(θ, v)), (24)

R = SqMat−1(Rpc). (25)

We are in the case of the previous section, we can apply the
results derived, especially the low-rank tensor filter.

4.2. Polarimetric Low rank STAP Filter

We focus on three low-rank filter: Ŵlr(1,2,3), Ŵlr(1/2/3)

and Ŵlr(1,2/3). Ŵlr(1,2,3) is the same filter as the polari-
metric vector low rank filter with one deficient rank, r1,2,3.
Ŵlr(1/2/3) (which are based on the classic HOSVD) has 3
ranks to study, r1, r2 and r3. The rank r1, r2 are deficient if
β 6= 1 (β = 2V

Frd where V is the platform speed, Fr the PRF
and d the distance between 2 sensors). r3 is deficient and
depends of the correlation coefficient ρ between the polari-
metric channels. Ŵlr(12,3) has two ranks to study: r1,2 and
r3. r1,2 is the same as the 2D low rank vector case and can be
calculated by the Brennan’s rule [2].

4.3. SNR loss

In order to evaluate the performance of our filter, we study the
SNR Loss defined as follows:

ρloss =
SNRout

SNRmax
, (26)

where SNRout is the SNR at the output of the LR tensor
STAP filter and SNRmax the SNR at the output of the op-
timal filter (Wopt). The Signal to Noise Ratio at the filter
output SNRout is:

SNRout =
| < Ŵlr,S

′ > |2

E[| < Ŵlr,N > |2]
=

vec(S′)Hvec(S′)

vec(S′)HSqMat(R)vec(S′)
(27)

The SNRout is maximum when W = Wopt = SqMat(R)−1vec(S).
After some steps, the SNR loss is finally equal to:

ρloss =
|(vec(S′)Hvec(S′))|2

vec(S′)HSqMat(R)vec(S′)vec(S)HSqMat(R)−1vec(S)
(28)

4.4. Simulations
Parameters The simulations are performed with θ = 0◦

ans v = 10 m.s−1 for the target, a case where the classic
2D STAP is known to be inefficient. The RADAR receiver
is characterized by : M = N = 8, f0 = 450 MHz, the
platform speed, V = 100 m.s−1. We perform simulations
for two cases: ρ = 1 and ρ = 0.5. There are no deficient
rank in the spatial and temporal dimensions, r1 and r2 (β =
1). The rank of the space-time dimension r1,2 is equal to the
result of the Brennan’s rule [2], i.e 15 in our simulations. r3
is equal to 2 for ρ = 1 and 3 for ρ = 0.5. r1,2,3 is equal to
2r1,2 for ρ = 1 and 3r1,2 for ρ = 0.5. K, the number of
secondary data, is equal to 2r1,2,3 (K = 60 for ρ = 1 and
K = 90 for ρ = 0.5). SNR losses are performed from (28)
with Nrea = 1000 samples for each value of K.

Results Figure 1 (respectively figure 2) shows results of
several STAP filters for ρ = 1 (respectively for ρ = 0.5). As
v = 10m.s−1, the target will be very close of the clutter. We
notice, on the top left of figures 1 and 2, that the target can not
be detected by the 2D classical STAP filter given by (15). For
ρ = 1 the filter Ŵlr(1,2,3) which are similar to the polarimet-
ric vector STAP shows the polarimetric information allows to
enhance the target detection but many false alarms remains.
The filter Ŵlr(1/2/3) strongly reduces the false alarms by ex-
ploiting the polarimetric information and performs the best
result. The filter Ŵlr(1,2/3) is not efficient in this case. For
ρ = 0.5, the filter Ŵlr(1,2,3) also shows the interest of po-
larization. The filter Ŵlr(1/2/3) is not shown because the po-
larimetric dimension can not be reduced (r3 = 3). In this
case, Ŵlr(1,2/3) performs the most efficient result. We notice
that the most efficient filter depends of ρ. Moreover, these re-
sults depends on the number of secondary data, K. In order
to study this dependence, we perform the SNR loss in func-
tion of K. Figure 3 shows the SNR Losses for each filter. For
Ŵlr(1,2,3) we have the same results as the classic 2D low-rank
STAP, the SNR loss is equal to−3dB whenK = 2r1,2,3. The
other filters need less data to be efficient. We notice that the
performances of the filters are strongly linked to the number
of secondary data: for K < 2r1,2,3, Ŵlr(1,2,3) is less effi-
cient than the other filters but becomes equivalent or better
when K > 2r1,2,3. The SNR losses confirm the result con-
cerning the most efficient filter for each value of ρ. Finally,
we notice the interest of our approach, which can be adapted
to the data structures and/or parameters.

5. CONCLUSION

In this paper, we introduced a new multilinear tool: the cross-
HOSVDs. This new decomposition is characterized by the
use of combined and/or single information. This tool leads to
a set of low-rank tensor STAP filters. The first preliminary re-
sults on the polarimetric STAP illustrate the interest of these
multilinear filters. These results are confirmed by the study of
the SNR losses. We concluded that the choice of the decom-
position is important for the results: the most efficient solu-
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Fig. 1. Filter results for ρ = 1, Target located at position (θ =
0◦,v = 10m.s−1). Top left: Classic 2D STAP. Top right: tensor low-
rank STAP Ŵlr(1/2/3) (given by the HOSVD). Bottom left: Ŵlr(1,2/3),
which combine polarimetric and spatio-temporal information. Bottom right:
Ŵlr(1,2,3), which are equivalent to the polarimetric vector STAP.

Fig. 2. Filter results for ρ = 0.5, Target located at position (θ = 0◦,v =
10m.s−1). Top left: Classic 2D STAP. Top right: tensor low-rank STAP
Ŵlr(1,2/3), which combine polarimetric and spatio-temporal information.
Bottom left: Ŵlr(1,2,3), which are equivalent to the polarimetric vector
STAP.

Fig. 3. SNR Losses in function of number of secondary data.

tion depends of the parameters (the polarimtric correlation in
our case). In order to confirm the interest of our approach, we
have to investigate this new multilinear decomposition: espe-
cially the properties of the core tensor, the validity of the low
rank approximation (comparing to an alternating least squares
algorithm, ...). We have also to derive a tool to choose the best
decomposition, in function of a criterion.
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