
BAYESIAN LINEAR UNMIXING OF TIME-EVOLVING GENE EXPRESSION DATA USING A
HIDDEN MARKOV MODEL

Cécile Bazot(1), Nicolas Dobigeon(1), Jean-Yves Tourneret(1) and Alfred O. Hero III(2)

(1) University of Toulouse, IRIT/INP-ENSEEIHT, Toulouse, France
(2) University of Michigan, EECS Dept., Ann Arbor, USA

{cecile.bazot, nicolas.dobigeon, jean-yves.tourneret}@enseeiht.fr, hero@umich.edu

ABSTRACT

This paper describes a new hierarchical temporal Bayesian model
and a Markov chain Monte Carlo (MCMC) algorithm for gene factor
analysis. Each data sample is decomposed as a linear combination
of characteristic gene signatures (also called factors) with appropri-
ate proportions, or factor scores, following a linear mixing model
(LMM). The particularity of the proposed algorithm is that the LMM
model is combined with a hidden Markov model (HMM) to take into
account temporal dependencies between the samples. The proposed
HMM structure is motivated by the behavior of host molecular re-
sponse following exposure to an infectious agent. The complexity
of the posterior distribution resulting from the proposed HMM is al-
leviated by using a hybrid Gibbs sampler that generates samples dis-
tributed according to this distribution. These samples are then used
to approximate the standard Bayesian estimators of the unknown pa-
rameters. The performance of the proposed method is illustrated by
simulations conducted on synthetic data and on a real public dataset.

Index Terms— Bayesian inference, factor analysis, hidden
Markov model, time-evolving gene expression data

1. INTRODUCTION AND PROBLEM STATEMENT

During the last decades, factor analysis methods have been widely
studied and applied to gene microarray samples for discovering the
patterns of differential expression in time course experiments. The
aim of these methods is to find an interpretable decomposition of an
observation matrix Y = [y1, . . . ,yN ] ∈ R

G×N whose columns
(resp. rows) correspond to samples (resp. gene expression levels).
Each observed sample vector yi (i = 1, . . . , N ), of G gene expres-
sion levels, is assumed to satisfy a linear mixing model (LMM)

yi =
R∑

r=1

mrar,i + ni (1)

where mr = [m1,r, . . . , mG,r]
T denotes the rth gene signature

vector, also referred to as factor, ar,i is the contribution (or factor

score) of the rth gene signature in the ith observed sample, R is
the number of gene signatures present in the chip and ni denotes
a residual error. Considering N samples, the LMM model can be
rewritten as Y = MA + N where A = [a1, . . . , aN ] ∈ R

R×N

represents the factor score matrix, M = [m1, . . . ,mR] ∈ R
G×R

the factor loading matrix and N = [n1, . . . ,nN ] ∈ R
G×N the ma-

trix of residual errors. The proposed model also incorporates non-
negativity constraints on the factors (mg,r ≥ 0) and factor scores
(ar,i ≥ 0), as well as a sum-to-one constraint on the factor scores

(
∑R

r=1
ar,i = 1), as motivated in [1, 2]. As in other Bayesian gene

factor analysis methods, the residual error vectors ni are assumed to
be independent and identically distributed (i.i.d.) zero-mean Gaus-
sian with covariance matrix Σ = σ2IG

ni|σ
2 ∼ N

(
0G, σ2

IG

)
(2)

where IG is the identity matrix of dimension G × G and N (m,Σ)
denotes the multivariate Gaussian distribution with mean vector m

and covariance matrix Σ.
The objective of linear unmixing is to estimate the factor matrix

M and the factor score matrix A jointly from the available data sam-
ples contained in Y. Such approach has already been developed in
[1, 2] for gene expression microarrays where the authors particularly
focused on the estimation of the number of factors R additionally to
the unmixing. In this paper, we extend the method proposed in [1]
to exploit temporal dependencies between samples, using a hidden
Markov model (HMM). Indeed, HMMs are useful and popular tools
for analyzing time-varying data, also called time-evolving data in the
biostatistics literature. They have been recently adapted for gene ex-
pression data analysis in other contexts [3, 4].

This paper is organized as follows. Section 2 describes the pro-
posed HMM designed to incorporate temporal dependencies. Sec-
tion 3 presents the Bayesian model based on the HMM. Section
4 studies an hybrid Gibbs sampler generating samples distributed
according to the posterior distribution associated with the proposed
Bayesian model. The resulting algorithm is applied on both synthetic
and real time-evolving gene expression data in Section 5. Conclu-
sions are reported in Section 6.

2. DEFINING TEMPORAL DEPENDENCIES USING

HMMS

The observation matrix Y is composed of N columns correspond-
ing to the N samples collected on S individuals at T time instants,
so that N = ST . Previous results on real time-evolving gene ex-
pression data [1, 5] have shown that the individual host molecular
responses cluster into K = 4 states denoted as S1, . . . ,SK and de-
fined as follows: before inoculation (S1), post-inoculation asymp-
tomatic (S2), pre-onset-symptomatic (before significant symptoms
occur) (S3) and post-onset-symptomatic (S4). To identify the state
of a given individual s at a given instant t, we introduce a discrete
latent variable zs,t that takes its values in the finite set {1, . . . , K}.
Hence, zs,t = k if and only if the tth sample of the sth subject is

in the kth state Sk. Let Z = [z1, . . . , zS ]T ∈ R
S×T denote the la-

bel matrix giving information about the state of all samples, for each
subject (s = 1, . . . , S) and time instant (t = 1, . . . , T ). The vector
zs = [zs,1, . . . , zs,T ] is the label vector of the sth subject states. A
schematic view of this classification process is depicted in Fig. 1(a),
where the state of a given individual over time (resp. at a given time
instant over individuals) appears in the rows (resp. columns) of this
classification matrix.

To exploit the temporal evolution of the molecular responses,
these K states are modeled using an HMM assigned to the latent
variables gathered in the label matrix Z (see [6] for more details on
HMMs). Fig. 1(b) shows the proposed K-state HMM associated
with the temporal structure depicted in Fig. 1(a).
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Fig. 1. Left: classification matrix. Right: the 4-state Markov model.

Based on this directed graph, assuming the transition probabil-
ities are independent of the considered subject, the state transition
probability matrix Π can be decomposed as

Π =





π1,1 π1,2 π1,3 0
0 1 0 0
0 0 π3,3 π3,4

0 0 0 1



 (3)

with the initial state probability vector π
(0)

π
(0) =

[
1 0 0 0

]
(4)

and where πk,k′ = P[zs,t = k′ | zs,t−1 = k] for 1 ≤ k, k′ ≤ K
and t = 2, . . . , T . Note also that π1,3 = 1 − π1,1 − π1,2 and
π3,4 = 1 − π3,3. The HMM state transition matrix (3) and diagram
in Fig. 1(b) are motivated by the well-known susceptible-infectious-
recovered (SIR) model [7] for host molecular response. In particular,
the estimated transition probabilities πk,k′ might be used for clini-
cal interpretation. However, the proposed transition matrix is easily
generalized to other models with the caveat that the matrix should be
sparse in small sample size situations.

3. HIERARCHICAL BAYESIAN MODEL

This section introduces the hierarchical Bayesian model used to es-
timate the unknown parameters Θ = {M,A,Z, σ2}. This model is
based on the likelihood of the observations and on prior distributions
for the unknown parameters and hyperparameters.

3.1. Likelihood

The model and the statistical properties of the error vectors ni de-
fined in Section 1 yield a conditionally Gaussian distribution for the
ith observed sample, i.e., yi|M,ai, σ

2 ∼ N
(
Mai, σ

2IG

)
. As-

suming the N samples are independent, the likelihood function of
Y can be written as

f(Y|M,A, σ2) =
1

(2πσ2)GN/2
exp

[
−

1

2σ2

N∑

i=1

‖yi − Mai‖
2

]

(5)
where ‖·‖ is the standard l2-norm.

3.2. Parameter priors

In this section, we introduce prior distributions for the unknown pa-
rameters contained in Θ = {M,A,Z, σ2}.

3.2.1. Factor loading prior

Following [1] and [8], we propose to estimate the projections tr of
the factors mr (r = 1, . . . , R) onto a lower-dimensional subspace
VR−1 of RG−1 of dimension R−1. More precisely, VR−1 is identi-
fied by a standard dimension reduction method such as the principal
component analysis (PCA). The factors mr and their corresponding

projections tr are related by tr = P(mr−ȳ) where ȳ is the empiri-
cal mean of the observed samples and P is the (R−1)×G projection
matrix onto VR−1. The projected factors tr are then assigned a mul-
tivariate Gaussian distribution (MGD) NTr

(
er, s

2
rIr−1

)
truncated

on the set Tr . The truncation on the set Tr (defined in [8]) ensures
that all the components of the factor signatures are positive. The
mean vectors er are fixed using available prior knowledge or pro-
vided by an endmember extraction algorithm, e.g. the vertex com-
ponent analysis (VCA) [9] for hyperspectral imaging. Considering a

priori independence between the R projected factors, the joint prior
distribution for T = [t1, . . . , tR] is f (T) =

∏R
r=1

f (tr).

3.2.2. Factor score prior

As demonstrated in [5], molecular host responses of asymptomatic
and symptomatic subjects mainly differ in expression levels of the
factors. Consequently, the prior distributions of the factor score
vectors {ai}i=1,...,N are assumed to be distinct for scores asso-
ciated with different states S1, . . . ,SK . Moreover, to promote
interpretability of the results as in [4], the factor score vectors
{ai}i=1,...,N are assumed to satisfy the non-negativity and the
sum-to-one constraints defined in Section 1. Therefore, a Dirichlet
distribution is a natural prior distribution for the factor score vectors
ai (i = 1, . . . , N ) conditionally to the label k assigned to the ith
sample1 yi

ai|zi = k, δk ∼ DR (δk)

where DR (δk) is a Dirichlet distribution with parameters δk =

[δ1,k, . . . , δR,k]T . Assuming all factor score vectors {ai}i=1,...,N

are a priori independent, the joint prior distribution for the factor
score matrix A is

f (A|Z, ∆) =

K∏

k=1

∏

i∈Ck

f (ai|zi = k, δk)

with ∆ = [δ1, . . . , δK ] ∈ R
R×K and Ck = {i = 1, . . . , N |zi = k}

denotes the subset of sample indexes associated with the kth label.

3.2.3. Label prior

The prior probabilities of the latent variables zi (i = 1, . . . , N ) are
given by the initial state matrix π

(0) and the transition state matrix
Π previously defined in (4) and (3). Some state transition probabili-
ties (π1,1, π1,2 and π3,3) are unknown and will be estimated using a
hierarchical Bayesian algorithm.

3.2.4. Noise variance prior

As in common practice [1, 8], a conjugate inverse-Gamma distribu-
tion with parameters ν/2 and γ/2 is chosen as prior distribution for
the noise variance

σ2|ν, γ ∼ IG
(ν

2
,
γ

2

)
. (6)

The shape parameter ν will be fixed to ν = 2 whereas the scale
parameter γ will be an adjustable hyperparameter.

Assuming a priori independence between the individual param-
eters, the following prior is obtained

f(Θ|∆, γ) = P [Z] f(T)f(A|∆)f(σ2|ν, γ). (7)

1Note that, for conciseness, the latent variable zi is here indexed by a
single index for brevity. Of course, there is a direct relationship between this
index i and the couple of indices (s, t) introduced in Section 2.
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3.3. Hyperparameter priors

The accuracy of the proposed Bayesian estimation algorithm de-
pends on the values of the hyperparameters ∆, Π and γ. The ap-
proach investigated here consists of assigning appropriate priors to
these hyperparameters (also referred to as hyperpriors). Due to the
lack of prior information for these hyperparameters, we have chosen
non-informative hyperpriors. More precisely, the hyperparameters
∆ of the factor score vectors are assigned an improper uniform dis-
tribution on R

+, i.e.,

f (∆) ∝ 1
RRK

+
(∆)

where ∝ stands for “proportional to”.
Denote as π1 = [π1,1, π1,2, π1,3] and π3 = [π3,3, π3,4] the

unknown state transition probability subvectors of the matrix Π.
Following [10], a Dirichlet distribution with parameter vector αi

(i = 1, 3) is chosen as prior distribution for each of these unknown
state transition probability subvector πi, i.e.,

π1|α1 ∼ D3(α1), π3|α3 ∼ D2(α3).

Due to the lack of information regarding Π, all values of the Dirich-
let parameter vectors {αi}i=1,3 are assumed to be equal to 1.

A non-informative Jeffreys’ prior is assigned to the noise hyper-
parameter γ

f(γ) ∝
1

γ
1R+ (γ) .

Assuming that all the individual hyperparameters of this hier-
archical Bayesian model are a priori independent, the full posterior
distribution of the hyperparameter vector Ψ = {∆,Π, γ} is

f(Ψ) = f(∆)f(Π)f(γ). (8)

3.4. Posterior distribution

The joint posterior distribution of the unknown parameter vector
Θ = {T,A,Z, σ2} and the hyperparameter vector Ψ = {∆,Π, γ}
can be computed from the hierarchical structure

f(Θ,Ψ|Y) ∝ f(Y|Θ)f(Θ|Ψ)f(Ψ) (9)

where f(Y|Θ), f(Θ|Ψ) and f(Ψ) have been respectively defined
in (5), (7) and (8). Due to the constraints enforced on the data and
the proposed temporal HMM model, the joint posterior distribution
f (Θ,Ψ|Y) defined in (9) is far too complex to derive analytical
expressions for the Bayesian estimators of the unknown parameters.
To alleviate this problem, it is natural to use Markov chain Monte
Carlo (MCMC) methods [11] to generate samples asymptotically
distributed according to (9) and to compute Bayesian estimators us-
ing these generated samples.

4. HYBRID GIBBS SAMPLER

This section presents a Metropolis-within-Gibbs (MwG) sampling
strategy that generates random samples asymptotically distributed
according to the joint posterior distribution of interest f (Θ,Ψ|Y)
defined in (9). The Gibbs sampler iteratively generates samples dis-
tributed according to the full conditional distributions of the target
distribution. The principle of the MwG sampler is to use a Metropo-
lis move for any conditional distribution that cannot be sampled di-
rectly. The different steps of the MwG proposed for the Bayesian
unmixing of gene expression data are detailed below.

4.1. Sampling from f(T|A, σ2,Y)

Gibbs moves are used to sample from f(T|A, σ2,Y) (see [8] for
details).

4.2. Sampling from f
(
ai|M, zi = k, σ2, δk,yi

)

For each sample i (i = 1, . . . , N ), the conditional posterior distri-
bution of the factor score vector ai is

f
(
ai|M, zi = k, σ2, δk,yi

)

∝
R∏

r=1

a
δr,k−1

r,i × exp

(
−
‖yi − Mai‖

2

2σ2

)
1A (ai) .

(10)

Since generating samples according to (10) is not straightforward,
we propose to use a Metropolis-Hastings step. We choose an MGD
truncated on the simplex A as the proposal distribution for the first
R − 1 scores, a1:R−1,i = [a1,i, . . . , aR−1,i]. Then, the sum-to-one
constraint enforced on the scores allows the remaining coefficient to
be computed, i.e., aR,i = 1 −

∑R−1

r=1
ar,i.

4.3. Sampling from P
[
zs,t = k|zs,t−1,ai, δk, π(0),Π

]

For the tth sample of subject #s (associated with yi and ai) straight-
forward computations yield to the following result

P
[
zs,t = k|zs,t−1,ai, δk, π(0),Π

]

∝ P[zs,t = k|zs,t−1]f (ai|zs,t−1 = k, δk) f
(
yi|ai, σ

2
)

∝ P[zs,t = k|zs,t−1]
Γ
(∑R

r=1
δr,k

)

∏R
r=1

δr,k

R∏

r=1

a
δr,k−1

i 1A (ai) .

(11)

The probabilities P[zs,t = k|zs,t−1] are defined in (3) and (4). Sam-
pling from this discrete conditional distribution can be achieved by
drawing a value in the finite set {1, . . . , K} with the normalized
probabilities (11).

Unfortunately we have to cope with the label switching problem
that can occur when assigning labels S2 and S3. This is a common
problem due to the lack of identifiability in HMM models such as
ours (see [12, p. 478] for more details on label switching). To solve
the label switching problem, a common approach is to enforce con-
straints. Here, since the fluctuations of the factor scores associated
with symptomatic subjects are expected to be greater than those as-
sociated with asymptomatic subjects, the variances of asymptomatic
scores are enforced to be lower than those of symptomatic scores,
avoiding the label switching problem.

4.4. Sampling from f
(
σ2|M,A, γ,Y

)

Using (5) and (6), the conditional distribution of the noise variance
σ2|M,A, γ,Y is the following inverse-Gamma distribution

σ2|M,A, γ,Y ∼ IG

(
GN

2
,
1

2

N∑

i=1

‖yi − Mai‖
2

)
,

that is easy to sample.
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4.5. Sampling from f (δr,k|ar,Z)

For each factor r (r = 1, . . . , R) and each state Sk (k = 1, . . . , K),
the Dirichlet parameters δr,k are generated according to

f (δr,k|ar,Z) ∝ f (δr,k)
∏

i∈Ck

f (ai|zi = k, δk)

∝
∏

i∈Ck

[
Γ(

∑R
r=1

δr,k)

Γ(δr,k)
a

δr,k−1

r,i

]
1R+ (δr,k) .

(12)

A Metropolis-Hastings step is employed to generate samples dis-
tributed according to (12). More precisely, samples are generated
using a random-walk with a truncated Gaussian instrumental distri-
bution N

(
0, w2

)
. The variance w2 is fixed in order to obtain an

acceptance rate between 0.15 and 0.50, as recommended in [13, p.
55].

4.6. Sampling from f(Π|Z)

Straightforward mathematical manipulations lead to a Dirichlet dis-
tribution as conditional distribution for the unknown state transition
probability vector πi (i = 1, 3) with parameters αi + Ni, where
N1 = [n1,1, n1,2, n1,3], N3 = [n3,3, n3,4], and ni,j = #{t | zs,t =
j and zs,t−1 = i}. More precisely, n1,2 corresponds to the number
of asymptomatic subjects and n1,3 = n3,4 is the number of symp-
tomatic subjects.

5. SIMULATION RESULTS

5.1. Synthetic data

The performance of the proposed algorithm is first illustrated on a
synthetic dataset consisting of N = 1000 samples, more precisely
S = 50 subjects and T = 20 time instants. Each sample vec-
tor is composed of exactly R = 4 factors, with G = 12000 gene
expression levels. To generate realistic signatures, the factors have
been extracted from previous results obtained on real time-evolving
gene expression dataset and have been mixed using the LMM model
(1). The synthetic state map, represented in Fig. 2(a), has been
generated according to the 4-state Markov chain in Fig. 1(b) with
π1 = [0.1, 0.45, 0.45], and π3 = [0.8, 0.2]. The observed vec-
tors have been corrupted by an i.i.d. Gaussian noise sequence with
signal-to-noise ratio SNR = 20 dB. The hidden mean vectors er

(r = 1, . . . , R) have been chosen as the PCA projections of signa-
tures previously identified by VCA [9].

The proposed algorithm has been run with Nmc = 1000 MCMC
iterations (with Nbi = 100 burn-in iterations). The MAP estima-
tors of the unknown parameters have then been computed from the

generated samples. For instance, the marginal MAP estimates Ẑ of
the state matrix Z depicted in Fig. 2(b) are globally in good agree-
ment with the actual states (Fig. 2(a)). The corresponding MAP
estimates of the inflammatory factor scores are displayed in Fig.
2(d). These estimates also agree with the ground truth shown in Fig.
2(c). The MMSE estimates of the unknown transition probabilities
are π̂1 = [0.02, 0.55, 0.43] and π̂3 = [0.83, 0.17]. The confusion
matrix displayed in Table 1 shows the performance of the classifier

based on the estimated label matrix Ẑ. From this confusion matrix,
one can compute the overall accuracy of the classification, i.e., the
percentage of correctly classified samples. The overall accuracy is
92.5%.

The performance of the proposed model is compared with the
non-temporal Bayesian linear unmixing model developed in [5], by
using the following criteria:
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Fig. 2. Top left: actual synthetic label matrix Z. Top right: marginal

MAP estimate of the label matrix Ẑ. Bottom left: actual synthetic
inflammatory factor score A. Bottom right: MAP estimate of the

inflammatory factor score Â.

Table 1. Confusion matrix for the state classification (S1, . . . ,S4).
Actual Z

S1 S2 S3 S4 Total

Estimated Ẑ

S1 50 0 0 0 50
S2 4 471 15 42 532
S3 0 0 98 12 110
S4 0 0 2 306 308

Total 54 471 115 360 1000

• the factor mean square errors (MSE) MSE2
r = 1

G
‖m̂r − mr‖

2,
r = 1, . . . , R where m̂r is the estimated rth factor loading vector,

• the global MSE of factor scores GMSE2
r = 1

N

∑N
i=1

(âr,i − ar,i)
2,

r = 1, . . . , R where âr,i is the estimated proportion of the rth
factor in the ith sample,

• the reconstruction error (RE) RE = 1

N

∑N
i=1

‖yi − ŷi‖
2 where

ŷi =
∑R

r=1
m̂râr,i is the estimate of yi,

• the computational time.

The results reported in Table 2 show that the proposed algorithm
performs similarly or better than its non-temporal version. The pro-
posed model has also the great advantage of providing a classifica-
tion of the samples according to the state of a subject at a given time
instant (Fig. 2(b)) since, unlike the static model [5], the states are
random variables with a posterior distribution.

Table 2. Comparative measures between the proposed temporal al-
gorithm and its non-temporal version.

Temporal Non-temporal

MSE2
r(×10−1)

0.04 0.06
10.52 12.13
1.70 1.70
9.31 9.31

GMSE2
r(×10−2)

1.31 3.76
0.91 2.49
0.90 0.84
0.44 0.48

RE (×102) 7.03 6.30
Time (in hours) 5.87 5.53
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5.2. Real data

This section illustrates the algorithm applied to the publicly available
time-evolving gene expression dataset (GEO series accession num-
ber GSE30550). This dataset consists of the gene expression levels
of N = 267 affymetrix chips collected at T = 16 time instants on
S = 17 healthy human volunteers experimentally infected with in-
fluenza A/H3N2/Wisconsin (see [14] for more details). Each sample
consisted of over G = 12000 gene expression values normalized
according to the procedure in [5].

The proposed algorithm was run with Nmc = 1000 Monte Carlo
iterations, including a burn-in period of Nbi = 100 iterations. The
number of factors was determined using the algorithm described in
[1] yielding R = 4. As the time of inoculation was known, the state
probability π1,1 was fixed to π1,1 = 2/T . As in previous analysis
[5, 14], the proposed algorithm identifies a strong factor, also called
the inflammatory component. The factor score vector associated
with this inflammatory component is shown in Fig. 3(a) as an im-
age whose columns (resp. rows) correspond to a specific time point
(resp. subject) across the S = 17 subjects (resp. the T = 16 time
instants). Note that the subjects have been reordered following the
prior classification proposed in [14]. The corresponding estimated

classification matrix Ẑ is shown in Fig. 3(b). The proposed algo-
rithm can be used to estimate the unknown state transition probabil-
ities. For instance, the MMSE estimates are π̂1 = [0.14, 0.45, 0.41]
and π̂3 = [0.84, 0.16].
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Fig. 3. Left: estimated factor scores associated with the inflamma-

tory component. Right: estimated classification map Ẑ.

Fig. 3 shows that the proposed algorithm clearly separates the
subjects exhibiting symptoms (associated with the last 9 rows) from
those who remain asymptomatic (associated with the first 8 rows).
Subject #15 (associated with the last row) is classified as an asymp-
tomatic subject, which seems to be coherent with the associated fac-
tor scores (see [5, 14]). The proposed temporal method has been
compared with its non-temporal version [1]. Table 3 reports the
Fisher linear discriminant measure [15, p. 119] computed between
the post-onset-symptomatic samples (C4) and the other samples, REs
and computational times for the two considered algorithms. The
two algorithms provide similar results in terms of estimation per-
formance. However, the temporal algorithm has the advantage that
it generates a posterior distribution of the state. Results obtained by
the proposed temporal algorithm on the H3N2 dataset also provide
similar results in terms of discovering an inflammatory factor and
separating sick from healthy individuals than previous analysis [5].

Table 3. Comparative measures on real H3N2 dataset.
Temporal Non-temporal

Fisher linear discriminant (×10−2) 5.24 5.28

RE (×10−2) 6.59 6.51
Time (in s) 3295 2808

6. CONCLUSIONS

This paper proposed a new hierarchical time-evolving Bayesian un-
mixing algorithm for longitudinal time series measurements. Time
dependencies were considered by using a 4-state hidden Markov
model. The resulting Markov model was combined with other prior
information and statistical properties of the observed data to build
an appropriate posterior distribution. A hybrid Gibbs sampler was
implemented to generate random samples asymptotically distributed
according to this joint posterior distribution. MAP estimators of the
model parameters and hyperparameters were computed using these
samples. Simulation results performed on synthetic and real gene
time-series illustrated the accuracy of the proposed temporal algo-
rithm in terms of unmixing and classification. Future works include
i) the estimation of the number of factors jointly with the other pa-
rameters and the classification map, ii) the consideration of non-
stationary states in the HMM exploiting the fact that the state transi-
tions be non-Markovian.
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