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ABSTRACT

Metabolomics studies are designed to identify, measure, and
interpret complex profiles of small organic molecules in
different biological samples. Recent high-resolution mass
spectrometers, thanks to accurate mass measurements, enable
a more reliable compounds identification. The mass spec-
tra matrices considered are nonnegative quantities exhibiting
intensity-dependent noise. Among the different Nonnegative
Matrix Factorization (NMF) algorithms, the weighted one
seems able to handle, with a suitable weighting, this kind of
noise. In this paper we compare the performance of NMF and
Weigthed NMF (WNMF) in the extraction of different com-
pounds in mass spectrometry data. Numerical experiments on
simulated and real data sets illustrate the good behavior and
the usefulness of this new method for high-resolution mass
spectrometry.

Index Terms— mass spectrometry, nonnegative matrix
factorization, multiplicative algorithms, weighted low-rank
approximation

1. INTRODUCTION

Nonnegative matrix factorization (NMF) is a useful method
as soon as we consider measured nonnegative quantities is-
sued from additive combination of different features [1, 2].
NMF has been used in a large scope of applications as face
representation [1] or music analysis [3]. To evaluate the ac-
curacy of the factorization, numerous cost functions exist and
the most applied are squared Euclidean distance or Kullback
Leibler divergence [1]. Other cost functions rely on general-
ized divergence such as « or 3 divergences [4, 5]. The choice
of a relevant cost function is made through the analysis of the
noise in the data or the data itself.

In this paper, we consider the analysis of mass spectra
data. In recent Orbitrap mass spectrometer [6, 7], an intensity-
dependent noise appears in the data [8, 9] but due to the com-
plexity of the measure and the novelty of this technology, no
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noise model has been rigorously proposed. Itakura Saito di-
vergence has been studied as a good choice for factorization
of music signals in a multiplicative gamma noise case [3]. In
the case of spectrometry data, the lack of information about
the mixing model of the compounds, leads to a simple model
modified by weighting dealing with uncertainty in the mixing
or noise model as the Weighted Nonnegative Matrix Factor-
ization (WNMF). Through the use of weighting matrix, these
approachs deal with missing values in distance metrics [10]
or collaborative prediction [11] and psychoacoustical mask-
ing model [12].

NMF has been recently applied to other technology of
mass spectrometer with different mixing model [13]. In
Matrix-Assisted Laser Desorption/Ionisation Time-Of-Flight
(MALDI-TOF) mass spectrometry [14], sparse coding is
highlighted as a simpler ion peak detector in the extracted
compounds features. Including uncertainty information com-
ing from replicated measurements in a Least Squares Non-
negative Matrix Factorization (LS-NMF) [15] improves the
biological grouping of genes in DNA microarray.

In this paper, we investigate the use of NMF for analyzing
the data acquired by the combination of high-performance lig-
uid chromatography (HPLC) and high-resolution mass spec-
trometry (MS). HPLC-MS is widely used for metabolomics,
the study of the collection of small molecules occuring in bi-
ological media.

The traditional HPLC-MS analyses go through the use of
methods in software like XCMS [16] or MZmine [17]. The
first stage in these analyses is the feature detection or peak de-
tection in the retention time / mass-to-charge ratio plane (two
dimensions), and feature matching or peak grouping based
on compound ions. The interest of the NMF approach is to
replace this first stage and thus its capability to be included
in a classical workflow. Furthermore, this approach begins
with the grouping of features without additional informations,
hence the peak detection can be done in the extracted com-
pounds in retention time dimension and mass-to-charge ratio
dimension separately.



This paper is organized as follows: Section 2 recalls the
NMF and weighted NMF algorithms. In Section 3, we de-
scribe the HPLC-MS data and we derive an adapted weighting
matrix. The two considered algorithms are then compared in
the experimental section 4 and we conclude on the usefulness
of our approach.

2. WEIGHTED NMF

We consider a matrix X € RiXM i.e. with nonnegative ele-
ments, Vt,m € [1,...,T] x [1,..., M], Xy, = 0or X > 0.
The NMF problem is to find the matrices A € R{XK and
Se Rf *M yith nonnegative elements such that:

X~ AS =

K
> ALSk, o)
k=1

where K is the number of sources or the rank of the factor-
ization. K is assumed known or overestimated. NMF can be
seen as similar decomposition like Singular Value Decompo-
sition (SVD) or Independent Component Analysis (ICA) [18]
for non-negative data [19] with less independence constraints.
The conventional way to find A and S is to minimize a cost
function C dealing with a measure of fit D between X and
AS:

C(A,S) = mm D(X|AS)
A>0 S>0 A>0,S
T M
D(X|AS) =3 3 d xm|<As> ) @
t=1m=1

D is a separable function and d is a scalar function. C' is
minimized in an iterative alternating way. At each iteration,
C' is minimized with respect to .S with A fixed, then C' is
minimized with respect to A with S fixed. The measure of fit
between X and AS can be a distance or a divergence.

A measure of fit with Euclidian distance yields:

Dpuc(X|AS) =

A first approach to minimize (3) has been introduced by [1]
with the multiplicative update algorithm:
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NMF EUC
Input: X € RJTFXM, K
Output: A € RT*® and S € RF*M

1. Initial values: Ag, So.

2. Repeat:

AT
o Sk+1 - Sk O] AT(Ai(Sk)

XS,
Ap O (AxSk

o Ay = ST,

3. Solutions : A and S.

where © and — are respectively element-wise multiplication
and division. The updates of S and A are then done with a
multiplication by a nonnegative factor, hence preserving the
nonnegativity.

To deal with uncertainty in the model and/or the data X,
the cost function D gy can be weighted, giving:

DWEUC X|AS Z Z th Xtm AS) ) ) (4)

l\DI)—l

where W € RJTFXM is a nonnegative weighting matrix. Mul-
tiplicative updates are proposed in [10]:

WNMF EUC
Input: X € RT_XM, W e RiXM, 0< WK
Output: A € RT*® and § € RF*M

land K

1. Initial values: Ag, So.

2. Repeat:
WoX
L4 Sk+1 =S5, m
. (WoX)s{
[ ] Ak+1 - Ak ® (WQAkSk+f;S]E+1

3. Solutions : A and S.

3. HIGH RESOLUTION HPLC-MS

In this paper, we will study data acquired by the combination
of HPLC and high-resolution LTQ-Orbitrap instrument [6, 7].

The liquid chromatography realises a separation of the
different compounds in a biological or chemical sample giv-
ing a time dimension in the acquired data. Chromatograph-
ically resolved compounds are ionized in the source of the
mass spectrometer, and then discriminated in the analyzer ac-
cording to their mass-to-charge ratio (m/z). This gives the m/z
dimension of the data. The abundance (positive value) of the
trapped ions are measured in a detector.



In the model (1), the matrix X & RfXM stacks the T
different m/z spectra X, row vectors of length M, measured
over time. The NMF performs the separation of the K com-
pounds, each defined by an elution profile A ; and a mass
spectrum Sy, .

The noise in the abundance measurement has an absolute
part and an intensity-dependent one [8, 9]. We consider the
model:

Xtm = th + Btma (5)

with By, X, Yem, noise, noise corrupted abundance and
true abundance. We observed on real data that the noise vari-
ance can be approximately written as:
2 2 2

Var(Bim) ~ 03 + 0 Yim, (6)
where 04 and o), are empirically tuned. Consequently, it is
natural to normalize this signal dependent noise variance via
the following weighting matrix W:

1
W= —u— 7
— 7

where V- and .2 are applied element-wise and a = oy /0 4.
X s is the temporally smoothed (filtering of the columns) ma-
trix X and « deals with the predominance of the intensity-
dependent (multiplicative) noise over the absolute one (ad-
ditive). This weighting matrix is non negative and takes its
values between 0 and 1.

4. EXPERIMENTAL RESULTS

The HPLC-MS data sets (simulated and real) treated here are
mixtures of commercial chemical compounds [20]. We com-
pare performance of Euclidian distance based algorithms,
with or without weighting, denoted thereafter NMF and
WNME. The two algorithms are initialized with the same
starting points:

e A, is initialized with the elution profiles of the com-
pounds determined by the previous analysis [20]. In a
real world scenario, these elution profiles can be read
for the most abundant compounds from the most inten-
sive peaks in X.

e Sy is randomly initialized.

We set the number of iterations for the two algorithms to 200.
Our experiments show that the best compromise is obtained
with the o parameter in (7) set to 10~°.

4.1. Simulated Data set

In [20], the full mass spectra extraction of the chemical com-
pounds is done with flow-injection analysis (FIA), that is, di-
rect injection of each compound separately. This method lim-
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its the ion suppression phenomenon occuring during the ion-
ization of different mixed compounds and allows the full mass
spectra extraction of all the compounds.

Combining the full mass spectra from FIA-MS and the
previously extracted elution profile from HPLC-MS, we gen-
erate realistic compound analysis presented in Fig. 1. We
present the four different columns of the matrix A (elution
profile), rows of the matrix S (mass spectrum) and the con-
tribution of each source (compound) to the matrix X. We
display retention time between 11 and 13 minutes and mass-
to-charge ratio between 80 and 680 m/z.

In the contribution view, we see more easily the isotopic
clusters (chromatographic peaks close in m/z) in the retention
time / mass-to-charge ratio plane. Even with intensities re-
ally lower than some main lone peaks, these groups are more
visible because of the thickness of the m/z peaks.

The mixing is done according to the following model:
X = [AS ® Ny + NyJo, (®)

where the non linear operator [v]y used to avoid negative
values is defined as [v]g = max{v,0}. Nj,; and N4 are
randomly drawn matrices following N'(1, 0%,) and N'(0, 0%)
normal distributions respectively. They are accounting re-
spectively for intensity-dependent and absolute part of noise.

Fig. 2 presents the Mean Squared Error (MSE) between
the extracted and simulated mass spectra for differents o,
with 04 = 1000. o varies between 1 x 10~%and 1 x 10~
100 Monte-Carlo realizations have been done for each value
of ops. The mean of the MSE is taken over the four mixed
sources. WNMF produces better results than NMF even in
the near pure additive noise case (o7 = 1 x 107%).

-7
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Fig. 2. Average MSE of the four extracted mass spectra over
100 Monte-Carlo realizations: NMF (solid lines) and WNMF
(dashed lines)
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Fig. 1. Simulated HPLC-MS spectra: maximum amplitude are 1 for the mass spectra and 5 x 10° for elution profiles

4.2. Real Data set

We study the same time span for the real data set. Some
of the theoretically expected ions were not detected, due to
low ionization recoveries for some compounds, and perhaps
also to ion suppression phenomenon, the mass-to-charge ratio
spanned the 60-450 m/z.

Fig. 3 shows the analysed spectrum. This set consists of
five compounds, so we set the number of sources K to 5.
The four first columns of A are initialized with the elution
profiles of the known compounds, the last column and S are
randomly inititialized.

The separated elution profiles are drawn in Fig. 4 for NMF
and WNME. The fourth known compound is not present in
the result given by the NMF, even if one of the column of
A is initialized with its elusion profile. The NMF algorithm
spreads the third known compound on two components, over-
fitting its elusion profile. The overfitting of high intensity
peaks happens at the expense of the accuracy of the lower
intensity peaks. The recognition of a compound from its ion-
ized forms is easier when we have more ions in the mass spec-
trum. The WNMF exhibits a better behavior as it gives all the
expected compounds in the component.
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Fig. 3. HPLC-MS spectrum.
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Fig. 4. Separated elusion profiles, real data set: recognized
compounds (solid lines) and unknown compound (dashed
line), from top to bottom, WNMF and NMF.

5. CONCLUSION

We have presented the problem of high resolution HPLC-
MS analysis using nonnegative matrix factorization. The
weighted nonnegative matrix factorization was adapted to
the intensity-dependent noisy spectrum data. Experiments
on simulated and real data sets show a promising behavior
of the WNMF over the classical NMF: the non overfitting
decomposition allows to discover more compounds and more
accurately. We expect to get even better results with algo-
rithms using non multiplicatives updates as the Alternating
Nonnegative Least Squares update.
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