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ABSTRACT

This paper presents a novel hierarchical Bayesian model

which allows to reconstruct sparse signals using a set of

linear measurements corrupted by Gaussian noise. The pro-

posed model can be considered as the Bayesian counterpart of

the adaptive lasso criterion. A fast iterative algorithm, which

is based on the type-II maximum likelihood methodology, is

properly adjusted to conduct Bayesian inference on the un-

known model parameters. The performance of the proposed

hierarchical Bayesian approach is illustrated on the recon-

struction of both sparse synthetic data, as well as real images.

Experimental results show the improved performance of

the proposed approach, when compared to state-of-the-art

Bayesian compressive sensing algorithms.

Index Terms— Bayesian compressive sensing, adaptive

lasso, sparse linear regression, hierarchical Bayesian analysis.

1. INTRODUCTION

Compressive sensing (CS) has gained considerable attention

in the signal processing community over the recent years. In

the standard framework of CS, the goal is to recover a sparse

signal w ∈ RN from a set of M linear, noisy measurements

y = Φw + n, (1)

where Φ = [φ1,φ2, . . . ,φN ] is a M × N design matrix,

M ≪ N , and n is the additive noise. The existence of

fewer measurements than parameters in (1) results in an in-

finite number of possible solutions for w. However, utilizing

the prior knowledge that w is sparse, CS theory dictates that

in principle, one may recover the exact solution of w with

high probability [1]. Mathematically speaking, under certain

conditions, a sparse solution for w can be recovered by con-

sidering the following ℓ1 norm minimization problem

min ‖w‖1 subject to ‖y −Φw‖22 ≤ ǫ, (2)

which retains the sparsity of the solution [1]. This problem,

also known as the lasso [2] is a convex optimization problem

and can be efficiently solved in polynomial time.

Recently, a number of Bayesian type methods for solv-

ing (2) have been proposed, in which the sparsity promoting

Laplace distribution is utilized. In [3], a hierarchical Bayes in-

terpretation of the Laplacian prior for w is introduced and an

expectation maximization (EM) algorithm is used to estimate

the unknown model parameters. The framework of Bayesian

CS is analytically established in [4], and a hierarchical model

based on the concept of the relevance vector machine (RVM)

[5] is adopted. Then, a fast, sub-optimal marginal likelihood

maximization algorithm, proposed in [6], is adjusted to per-

form Bayesian inference. The same efficient algorithm is also

employed and properly adjusted, under a suitable hierarchical

formulation of the Laplace prior in [7] .

In this paper, we extend the hierarchical Bayesian model

of [7, 8] to incorporate an independent Laplace prior for each

coefficient of the sparse signal vector w. Our motivation is

to establish the Bayesian analogue of the adaptive lasso cri-

terion, recently proposed in [9]. It is known that the assigne-

ment of different penalization weights to different entries of

the sparse signal vector w can lead to a consistent estima-

tor for w, as opposed to the ℓ1 minimization of the original

lasso [2]. To perform Bayesian inference, the fast technique

proposed in [6] is properly adjusted to our model. This is

based on a type-II maximum likelihood approach, where a

fast, iterative, coordinate-type algorithm is employed for the

maximization of the marginal log-likelihood function. Exper-

imental results on simulated data, as well as an image restora-

tion example illustrate the performance improvement offered

by the proposed estimator, when compared to other related

Bayesian methods.

This paper is organized as follows. The proposed hierar-

chical Bayesian model is described in Section 2. Section 3

presents the fast type-II maximum likelihood algorithm. Sim-

ulation results are presented in Section 4. Finally, conclusions

are provided in Section 5.

2. BAYESIAN MODELING

In this section, a novel hierarchical Bayesian model is pre-

sented and its analogy to the Bayesian adaptive lasso criterion
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is proven. In the following, we assume that the additive noise

in (1) is independent of w and has a zero-mean Gaussian dis-

tribution, n ∼ N (n|0, β−1IM ). This leads to a multivariate

Gaussian likelihood for the measurement y,

p(y|w, β) = N (y|Φw, β−1IM )

= (2π)
−M

2 β
M

2 exp

[

−β
2
‖y −Φw‖22

]

, (3)

where IM is the M × M identity matrix and β > 0 is the

noise precision parameter.

2.1. The Bayesian adaptive lasso

As noted in [9], the ℓ1 norm in (2) penalizes more heavily the

larger signal components rather than the smaller ones, and as

a result, can lead to suboptimal solutions. According to [9],

different weighting coefficients for the ℓ1 penalty can be as-

signed to different entries of the sparse signal vector w, in

order to improve estimation accuracy. Using Lagrangian ar-

guments and utilizing a weighted ℓ1 norm, the adaptive lasso

optimization problem is expressed as

wadlasso = argmin
w

{

‖y −Φw‖22 +
N∑

i=1

µi|wi|
}

, (4)

where µi > 0, i = 1, . . . , N . Note that, the solutions of the

lasso (2) and the adaptive lasso (4) will be both sparse, yet dif-

ferent. Therefore, it is expected that suitable selection of the

penalization parameters can result in better estimation perfor-

mance. In the following, we develop a hierarchical Bayesian

model which is analogue to the adaptive lasso criterion, by

utilizing N independent Laplace priors.

Assuming independence among the entries wi’s of w, as

in [4, 7, 8], the prior of w is expressed as a multivariate zero-

mean Gaussian distribution, i.e.,

p(w|γ) =
N∏

i=1

N (wi|0, γi)

= (2π)
−N

2 |Λ| 12 exp
[

−1

2
wTΛw

]

= N (w|0,Λ−1),

(5)

where γ = [γ1, γ2, . . . , γN ]T , γi ≥ 0 and Λ−1 = diag(γ).
Moreover, a conjugate Gamma distribution is assigned to β,

p(β;κ, θ) = Γ(β|κ, θ) = θκ

Γ(κ)
βκ−1exp [−θβ] , (6)

An effective way to construct a sparsity-promoting Laplace

distribution for w is to introduce an exponential prior over

the variance hyperparameter vector γ [3]. In this paper, N

independent exponential distributions are utilized for the hy-

perparameters γi, as in [10], i.e.,

p(γ|λ) =
N∏

i=1

p(γi|λi) =
N∏

i=1

[
λi
2
exp

[

−λi
2
γi

]]

=

(
1

2

)N

|Ψ| exp
[

−1

2

N∑

i=1

λiγi

]

, (7)

where λ = [λ1, λ2, . . . , λN ]T , λi > 0 and Ψ = diag(λ).
The proposed hierarchical model is completed by assigning

a conjugate Gamma prior over the sparsity-controlling hyper-

parameter vector λ given by

p(λ; ρ, δ) =

N∏

i=1

δρ

Γ(ρ)
λi

ρ−1exp [−δλi]

=

(
δρ

Γ(ρ)

)N

|Ψ|ρ−1exp

[

−δ
N∑

i=1

λi

]

, (8)

where ρ and δ are two hyperparameters not treated as random

variables, with ρ ≥ 0 and δ ≥ 0. Let us now highlight the

relation of the proposed hierarchical Bayesian model defined

by (5), (6), (7), and (8), with the adaptive lasso. Utilizing

(5), (7) and marginalizing out the parameter γ, a multivariate

Laplace distribution arises as a prior for w,

p(w|λ) =
N∏

i=1

∫

p(wi|γi)p(γi|λi)dγi

= 2−N |Ψ| 12 exp
[

−
N∑

i=1

√

λi |wi|
]

. (9)

It is then straightforward to verify that the MAP estimator of

w under the prior in (9), is expressed as

wMAP = argmin
w

{−log [p(y|w, β)p(w|λ)]}

= argmin
w

{

‖y −Φw‖22 +
2

β

N∑

i=1

√

λi |wi|
}

,

(10)

i.e., it coincides with the solution of the adaptive lasso for

µi =
2
β

√
λi.

3. BAYESIAN INFERENCE

As it is common in practice, Bayesian inference is based on

the posterior distribution of the model parameters w, β,γ,

and λ, which can be expressed as

p(w,γ,λ, β|y) = p(w,γ,λ, β,y)

p(y)
. (11)

However, it is rather difficult to compute this posterior distri-

bution analytically. One way to perform Bayesian inference

is to resort to a type-II maximum likelihood approach, as de-

scribed below.
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3.1. Type-II maximum likelihood approach

In a type-II maximum likelihood approach the objective is

to maximize the marginal likelihood, obtained by integrat-

ing out w, with respect to the unknown model parame-

ters. The posterior distribution in (11) can be factored as

p(w,γ,λ, β|y) = p(w|γ,λ, β,y)p(γ,λ, β|y). Then, the

distribution p(w|γ,λ, β,y) is easily shown to be the follow-

ing multivariate Gaussian,

p(w|y,γ,λ, β) = N (w|µ,Σ)

= (2π)
−N

2 |Σ|− 1

2 exp

[

− (w − µ)TΣ−1(w − µ)

2

]

, (12)

with parameters

Σ =
[

βΦTΦ+Λ
]−1

and µ = βΣΦTy. (13)

In the sequel, the model parameters β,γ, and λ are in-

dividually selected to maximize their joint posterior dis-

tribution p(γ,λ, β|y). From Bayes’ law, p(γ,λ, β|y) =
p(γ,λ, β,y)/p(y) ∝ p(γ,λ, β,y). It is therefore sufficient

to maximize p(γ,λ, β,y), which is obtained by integrating

out w from the joint p(y,w,γ,λ, β) , i.e.,

p(γ,λ, β,y) =

∫

p(w,γ,λ, β,y)dw

= (2π)−
M

2 |C|− 1

2 exp

[

−1

2
yTC−1y

]

p(γ|λ)p(λ)p(β),
(14)

where C = β−1IM +ΦΛ−1ΦT . Equivalently, we can max-

imize the logarithm of (14), denoted as L, with respect to λ,

γ, and β. After some algebraic manipulations similar to those

reported in [7], L can be expressed as

L =− M

2
log (2π)− 1

2
log|C| − 1

2
yTC−1y

+N log
1

2
+ ρlog|Ψ| − 1

2

N∑

i=1

λiγi +N log
δρ

Γ(ρ)

− δ

N∑

i=1

λi + log
θκ

Γ(κ)
+ (κ− 1)logβ − θβ (15)

Taking the partial derivatives of L, with respect to the param-

eters γ, λ, and β, and equating them to zero, the following

expressions are obtained

∂L
∂γi

= 0 ⇒ γi = − 1

2λi
+

√

1

4λ2i
+

〈w2
i 〉
λi

(16)

∂L
∂λi

= 0 ⇒ λi =
ρ

1
2γi + δ

(17)

∂L
∂β

= 0 ⇒ β =
M + 2κ− 2

‖y −Φµ‖22 + 2θ
(18)

∂L
∂ρ

= 0 ⇒ log|Ψ|+N logδ −Nψ(ρ) = 0 (19)

∂L
∂δ

= 0 ⇒ δ =
ρN

∑N
i=1 λi

, (20)

where ψ(·) is the digamma function, and 〈w2
i 〉 = µ2

i + Σii,

with µi being the ith diagonal element of µ and Σii the ith
diagonal element of Σ. Due to the dependencies among the

model parameters, equations (13) and (16) - (18) form an it-

erative updating scheme. However, this scheme is problem-

atic in practice, since (13) requires the inversion of a N ×N
matrix, which is both computationally demanding and sus-

ceptible to numerical errors. By properly modifying the sub-

optimum scheme proposed in [6], a numerically robust, fast

Bayesian Adaptive Lasso (Fast-BALa) algorithm is proposed

in the following section.

3.2. Fast suboptimal solution

In this section we develop a fast sub-optimal technique (note

the connection with the analysis presented in [7] - interested

readers are encouraged to refer to the analysis of [7] for de-

tails) to maximize the marginal log-likelihood L. In the fol-

lowing analysis, note that the importance of the parameter γ

lies in the fact that setting γi = 0 is equivalent to pruning the

ith variable out of the model, i.e., wi = 0 (see Eq. (5)).

Exploiting the diagonal form of Λ, matrix C in (14) is

written in a form that is convenient for analyzing the depen-

dence of L on a single parameter,

C =

C
¬i

︷ ︸︸ ︷

β−1IM +
∑

j 6=i

γjφjφ
T
j +γiφiφ

T
i (21)

Using the matrix inversion and determinant lemmas, (21) al-

lows us to write

C−1 = C−1
¬i − C−1

¬i φiφ
T
i C

−1
¬i

1
γi

+ φT
i C

−1
¬i φi

(22)

|C| = |1 + γiφ
T
i C

−1
¬i φi| |C−1

¬i |. (23)

Thus, the summation of the terms of L that depend on γ, de-

noted as L(γ), becomes

L(γ) = −1

2



log|C−1
¬i |+ yT |C−1

¬i |y +
∑

j 6=i

λjγj





+
1

2

[

log
1

1 + γisi
+

q2i γi
1 + γisi

− λiγi

]

= L(γ¬i) + l(γi),

(24)
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Table 1. The Fast-BALa algorithm

Input Φ, y, κ, θ, ρ, δ.

Set β = 0.01 ‖y‖22.

Initialize γ(0) = 0,λ(0) = 1.

for n = 1, 2, . . . do

Compute all possible γ
(n)
i ’s using (26).

Choose the γi with the maximum

d(n) = l(γ
(n)
i )− l(γ

(n−1)
i )

if d(n) is sufficiently small, break, endif

if (q
(n)
i )2 − s

(n)
i > λ

(n)
i and γ

(n−1)
i = 0

Add γi to the model.

else if (q
(n)
i )2 − s

(n)
i > λ

(n)
i and γ

(n−1)
i > 0

Keep γ
(n)
i as the updated value of γi.

else if (q
(n)
i )2 − s

(n)
i < λ

(n)
i

Prune γi from the model.

endif

Update µ and Σ using (13).

Update si and qi using (29).

Update λ using (17).

Update ρ and δ using (19) and (20).

endfor

where si and qi are defined as si = φT
i C

−1
¬i φi and qi =

φT
i C

−1
¬i y. It is interesting to see that the term L(γ¬i) does

not depend on the single parameter γi. Thus the partial deriva-

tive of L(γ) with respect to γi can be computed as

∂L(γ)
∂γi

=
∂l(γi)

∂γi
=

1

2

[

− si
1 + γisi

+
q2i

(1 + γisi)
2 − λi

]

= −1

2

[

γ2i
(
λis

2
i

)
+ γi

(
s2i + 2λisi

)
+
(
si − q2i + λi

)

(1 + γisi)
2

]

.

(25)

Computing the roots of the numerator polynomial in (25), γi
is estimated as ([7])

γi =
−si (si + 2λi) + si

√

(si + 2λi)
2
− 4λi (si − q2

i
+ λi)

2λis
2

i

(26)

if q2i − si > λ and 0 otherwise. The updating of γi using (26)

is followed by the updating of µ, Σ, λ, si, and qi. Based on

the analysis in [6], the updating of si and qi, which has to be

performed for all N model variables, is made as follows,

Si = βφT
i φi − φT

i βΦΣΦTβφi (27)

Qi = βφT
i y − φT

i βΦΣΦTβy, (28)

si =
Si

1− γiSi

, qi =
Qi

1− γiSi

(29)

The resulting fast Bayesian Adaptive Lasso algorithm is sum-

marized in Table 1. In its simplest form, i.e., when all λi’s are

identical and are updated using a single equation, Fast-BALa

is similar to the fast Laplace (FL) algorithm presented in [7].

Updating each λi independently using (17) improves estima-

tion accuracy. It should be noted that FL solves the conven-

tional lasso problem (2). Moreover, the updating of matrix

Σ takes into account only the selected variables at the cur-

rent iteration, which, in practice, are significantly fewer than

N . The parameter β is not included in the iterative scheme;

rather, it is set equal to β = 0.01 ‖y‖22, as in [7]. A powerful

feature of the algorithm is its ability to remove basis vectors

from the model that have been selected at early stages, which

is not the case for greedy algorithms, e.g., the OMP algorithm.

4. SIMULATION RESULTS

Simulations are conducted following the experimental set-

tings of [4, 7]. We compare the Fast-BALa algorithm with the

Bayesian compressive sensing (BCS) algorithm of [4], and FL

of [7]. In all experiments, we evaluate the reconstruction error

as ‖w − ŵest‖2 / ‖w‖2, where ŵest is the estimated coeffi-

cients vector. The first example considers a signal of length

N = 512 that contains T = 20 non-zero coefficients at ran-

dom locations. As in [7], the columns of Φ are uniformly

distributed on the sphere RN . The non-zero coefficients are

generated by employing: (a) ±1 uniform spikes, (b) the stan-

dard Gaussian distribution, N (0, 1). The number of measure-

ments M varies between 40 and 120 with a step size of 5, and

the average reconstruction error is computed for 100 signal

realizations. Zero-mean Gaussian noise with standard devia-

tion σ = 0.03 is added to the model and the results are shown

in Fig. 1. As expected, the reconstruction error reduces as

the number of measurements increases. It can be seen from

Fig. 1 that the proposed Fast-BALa agorithm has the best per-

formance, especially for lower values of M . It is interesting

to note that the only difference among the three methods lies

on the updating of the sparsity controlling parameter λ; in

BCS λ = 0, in FL all λi’s are equal and are updated using

a single equation, while in Fast-BALa λi’s are independent

and are updated using (17). The average computation time

per sample for the three methods is 0.0271s for BCS, 0.0872s

for FL, and 0.1713s for Fast-BALa.

Next, the proposed Fast-BALa algorithm is used for the

sparse representation of a 512 × 512 Mondrian image. As

in [4, 7], a multiscale CS scheme is applied on the wavelet

transform of the image using the “symmlet 8” wavelet with

the coarsest scale 4 and finest scale 6. The number of wavelet

samples is N = 4096, the number of measurements is M =
2713, and the measurement matrices are drawn from a uni-

form spherical distribution. Fig. 2(a) displays the linear re-

construction of the image, using all the M = 2713 measure-

ments, which is the best possible reconstruction. The corre-

sponding reconstructions of the BCS, FL, and Fast-BALa are

displayed in Figs. 2(b), 2(c), and 2(d), respectively. The num-

ber of the nonzero coefficients for BCS, FL, and Fast-BALa
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Fig. 1. Comparison of Bayesian CS algorithms

algorithms are 751, 802, and 911 respectively. As demon-

strated in Fig. 2, Fast-BALa offers the best reconstruction

performance, although it is slightly more computationally de-

manding.

5. CONCLUSION

In this paper, we have provided a Bayesian perspective over

the adaptive lasso criterion. The non-uniformly weighted ℓ1
penalty of the adaptive lasso was attained by employing N
independent Laplace priors. An efficient algorithm was then

properly modified to perform Bayesian inference. Experi-

mental results showed that the proposed method achieves bet-

ter performance than other state-of-the-art Bayesian CS algo-

rithms, at the cost of a small additional complexity.
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