
MULTI-CHANNEL ANALOG-TO-DIGITAL CONVERSION USING
A SINGLE-CHANNEL QUANTIZER

Youngchun Kim, Ahmed H. Tewfik

The University of Texas
Electrical and Computer Engineering

Austin, TX.

B. Vikrham Gowreesunker

Texas Instruments Inc.
Applications R&D Center

Dallas, TX.

ABSTRACT
We present a novel analog-to-digital converter (ADC) archi-
tecture and conversion scheme to digitize multiple input chan-
nels using a single-channel quantizer. The proposed system
consists of an analog front-end and a digital back-end. In the
analog front-end, bandlimited M -channel sparse signals are
discretized using sample-and-hold circuits, and then modu-
lated using pseudo-random binary sequences. After modula-
tion, the modulated signals are summed together before quan-
tization. This mixture is converted to digital sequences with
finite resolution followed by a single quantizer. The digital
back-end separates the digitized mixture into M -channel dig-
ital sequences. For separation, we propose different classes
of reconstruction methods that are used in sparse signal rep-
resentation. The experimental results, with an ideal quantizer,
show perfect recovery of the input signals if the input signals
have sufficient sparseness. In the case of a realistic ADC with
16-bit quantization noise, the reconstruction is possible up to
108 dB in signal-to-reconstruction error ratio.

Index Terms— multi-channel ADC, source separation,
sparse representation, spectrum spreading.

1. INTRODUCTION

Signal processing applications require digitization of multiple
channels of analog signals, such as sensor arrays, monitoring
physiological signals, and brain machine interfaces (BMI). In
BMI, 32 to 128 channel data acquisition is usual to analyze
and estimate brain activity. In cellphone and smart-phone ap-
plications, multi-microphone techniques are widely used for
noise cancellation and speech enhancement techniques. In-
spired from these examples, we propose a new ADC archi-
tecture to answer the question of whether or not we can use
a fewer number of ADCs than channels. In this paper, we
show that it is possible to use fewer ADCs than channels if
we leverage sparse representation of signals and blind source
separation (BSS) techniques [1, 2].

Two straightforward approaches to perform multi-channel
A/D conversion with a single-channel quantizer are time mul-
tiplexing and frequency multiplexing. In time multiplexing,

every input channels are converted in turns based on a mul-
tiplexing scheme. Thus, the effective bandwidth per channel
is linearly reduced by the total number of channels. In fre-
quency multiplexing, analog inputs are modulated to occupy
non-overlapping frequency bands, and then the sum of mod-
ulated signals is digitized. The main disadvantage of the fre-
quency modulation is the high operation frequency, which in-
creases linearly with respect to the number of channels, lead-
ing to extra power consumption. Compressed sensing (CS)
approaches have been studied to sample and reconstruct a sig-
nal at sub-Nyquist rates [3, 4]. However, they focus on sam-
pling single channel information rather than converting multi-
ple channels. Recently, Slavinsky and Baraniuk [5] proposed
the compressive multiplexer (CMUX) for multi-channel sig-
nals, but CMUX has an architecture based on a CS technique
that leads to bandwidth expansion.

We describe here an alternative approach that does not re-
quire bandwidth expansion, assuming that all the input chan-
nels that will be digitized are represented in known dictio-
naries. The proposed ADC system has several advantages in
circuit or semiconductor scale implementation. The system is
realized with switched-capacitor (SC) based sample-and-hold
(S/H) circuits. The reasons to use a SC circuit are its high lin-
earity, and insensitivity to process, voltage, and temperature
variations as well. Such systems perform A/D conversion us-
ing discrete-time operations implemented in analog domain.
In our proposed solution, the input signals are sampled at the
Nyquist rate or a slightly higher rate, which is determined by
the maximum number of sinusoids in the input channels. The
sampled signals are mixed after multiplication by properly se-
lected binary sequences (±1) that can easily be implemented
via polarity reversal. The resulting output is then separated
into digitized sequences corresponding to the input channels.
For sufficiently sparse input signals, separation, up to the ac-
curacy of a quantizer, can be obtained by using an extension
of traditional sparse signal reconstruction methods.

This paper is organized as follows: in Section 2, we give
an overview of the proposed system. In Section 3, we dis-
cuss sparse signal model and reconstruction algorithms. In
Section 4, we present experimental results of the proposed
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system. Finally, we discuss the outcome of the study in Sec-
tion 5.

2. SYSTEM OVERVIEW

The proposed system consists of two blocks, an analog front-
end and a digital back-end. The analog front-end includes
lowpass filters (LPFs), SC based S/H circuits and modulators,
and a single-channel quantizer. The overall architecture of
the proposed ADC system is shown in Fig. 1(a). In this paper,
for the limitation of space, our exposition focuses on the dis-
cretization and reconstruction schemes rather than presenting
a circuit realization of the proposed system.

2.1. Analog front-end

At the analog front-end, the bandlimited inputs are sampled
and modulated with a set of pseudo-random sequences. The
LPFs in Fig. 1(a) are traditional anti-aliasing filters, which
limit each input signal bandwidth to the Nyquist rate of the
quantizer. We can implement the modulators, S/H circuits,
and the adder using SC circuits and an operational transcon-
ductance amplifier (OTA). We do not need to design a special
single-channel quantizer, and any type of quantizers or ADCs,
such as flash, folding and interpolating, pipelined, and succes-
sive approximation register (SAR), can be used to digitize the
discrete-time mixture signal to digital sequences with limited
resolution.

2.2. Digital back-end

The digital back-end recovers each input channel using a re-
covery algorithm. It also generates spreading sequences for
each input channel and controls the S/H circuits and modula-
tors. Once we select a pseudo-random sequence, the sequence
will be pre-stored in a memory unit to control the modulators.
The performance of the proposed ADC depends on the recov-
ery algorithm operating on the digital back-end, and it could
be a major power consuming unit. However, we expect that
the proposed architecture will consume less energy than tradi-
tional multi-channel scheme with benefits from the progress
speed and scale of digital circuit industry.

2.3. Sampling rate

Each input channel is assumed to have a sparse representa-
tion in a known dictionary, over any interval of time, and each
signal can be reconstructed using a number of dictionary el-
ements, which is less than the degrees of freedom associated
with the time interval. The sampling rate is selected such that
the number of samples in any time interval T is larger than
the sum of the total number of complex exponentials in all in-
put signals. For example, assuming that at the Nyquist sam-
pling rate, the time interval over which the signals are quasi-
stationary consists ofN samples, and that each signal consists

of a random superposition of a random number of columns of
the N -point discrete Fourier transform (DFT) matrix. Then
reconstruction from sampling the signals at the Nyquist rate
is possible only if the sum of the numbers of complex expo-
nentials in each signal is less than N . In a more general case,
for signals that are quasi-stationary over intervals of length
T , the sampling rate fs must provide in any time interval T
a number of samples N = Tfs such that N is larger than the
sum of the total number of dictionary elements required to
express each of the input signals.

2.4. Modulation and mixing

The main challenge in the proposed system is to separate each
input channel after they have been summed together. To ad-
dress this problem, we modulate all channel inputs by a prop-
erly designed sequence, and we select binary sequences of±1
to perform the modulation. Such a modulation scheme can
be simply implemented by polarity reversal. In addition, it
avoids amplifying or attenuating the signal amplitude. From
all of the possible binary sequences, we seek a binary se-
quence that will simplify the signal reconstruction problem.
Demodulation at the DSP block is very simple since it con-
sists of multiplying the signal samples by the same sequence
used in the modulation stage. After modulation by such a se-
quence, each modulated dictionary elements must have a non-
sparse representation in terms of the original dictionary, but
the sparsest representation of the mixture will consist of the
columns of the modulated DFT matrix. In realization, we can
combine a S/H and a modulator with an SC based block 1(b).
The SC based implementation allows us to perform discrete-
time operations in the analog domain. In particular, the mod-
ulation is a discrete-time modulation performed in the analog
domain, and hence, leads to no bandwidth expansion.

2.5. Sequence selection

We seek a binary pseudo-random sequence for spreading each
input signal over the bandwidth which is determined by the
sampling rate fs. A class of binary pseudo-random sequences
with good correlation properties are reported in many com-
munication studies. The maximum length, Gold, Kasami,
and Hadamard sequences are popular sequences that belongs
to this classes. Each binary sequence has different lengths
of period, bounds, and auto- and cross-correlation character-
istics. The first three, maximum length, Gold, and Kasami
sequences have an odd integer lengths, while Hadamard
sequence has an even integer length. These different period-
icities can be exploited to design effective signal separation
methods, including the general case where the input sig-
nals consist of unknown numbers of sinusoids of unknown
frequencies. Although the sequences have different period-
icities, they exhibit a good auto-correlation property, and the
cross-correlations of Kasami sequences approach Welch’s
lower bound. The correlation properties of sequences are
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Fig. 1. Proposed ADC structure with two input channels (a), and SC based S/H circuit (b). The S/H block is controlled by two non-
overlapping φ1 and φ2 clocks. When φ1 is high, the S/H circuit samples the input. When φ2 is high, it holds the sampled signal to modulate
before summing all channel inputs.

important to choose accurate dictionary atoms from the sig-
nal mixture, and we need to investigate these properties in
selecting a sequence. Hadamard sequence is reported to of-
fer a poor spectral estimation probability because it shows
multiple peaks in its cross-correlation function. Kasami se-
quence is known to be the optimal choice in communication,
but this sequence also yields many peaks at Welch’s bound
level [6]. The maximum length and Gold sequences yield
a few peaks with low aggregate energy, thus we adopt the
maximum length sequence for simplicity in generation.

3. SPARSE INPUT MODEL AND
RECONSTRUCTION

In our ADC architecture, input channels are added all together
after modulation, and the mixture is digitized at the quan-
tizer. We try to find the sparsest basis vectors to represent the
digitized mixture from a known dictionary via various sparse
signal representation methods. The dictionary is a union of
atoms that consist of real or complex spectral supports, and
the dictionary and its atoms can be formed by commonly used
basis for example, DFT, DCT, MDCT, and wavelet basis. We
will use DFT basis in the rest of the paper, but we can choose
one of the basis, which will lead to a sparse representation of
input signals.

3.1. Sparse signal model

Without loss of generality and for simplicity of exposition, we
assume a signal consists of a superposition of a random num-
ber of columns of the N -point DFT matrix. We can represent
the mth-channel N × 1 sparse signal vector ~sm in terms of
N -point DFT dictionary Ω = {~ωn}Nn=1, such that each atom
~ωn is an N × 1 column vector,

~sm = Ω ~cm =

N∑
n=1

cm,n ~ωn, (1)

where m = the number of channels, n = 1, 2, · · · , N , and
cm,n is the nth entry of a sparse coefficient vector ~cm corre-
sponding to the dictionary atom ~ωn. If the signal vector ~sm
is K-sparse, then its coefficient vector ~cm has K nonzero en-
tries. Each input signal is now modulated with a spreading
sequence vector ~pm associated with the mth input channel,
which can be written as

~xm = ~pm ◦ ~sm, (2)

where the operator ◦ denotes entry-wise vector multiplication.
Subsequently, we obtain a mixture of the modulated signal
vectors which has the same bandwidth of the input signal,

~y =

M∑
m=1

~xm =

M∑
m=1

N∑
n=1

cm,n (~pm ◦ ~ωn) , (3)

where ~y is a N × 1 mixture vector. We rewrite equation (3)
with an augmented matrix A = [A1 A2 · · · AM ] which con-
sists of modulated DFT dictionaries Am = { ~pm ◦ ~wn}Nn=1

such that,

~y = A ~c, (4)

where ~c> = [~c>1 ~c>2 · · · ~c>M ] is the concatenated coeffi-
cient vector of each ~cm. The equation (4) shows a under-
determined system configuration, and thus we can recover
each channel input ~sm by accurate estimation of the coeffi-
cient vector ĉm and the original DFT dictionary Ω as

ŝm = Ω ĉm. (5)

We introduce three major family of algorithms to find a
sparse solution of the under-determined system in the follow-
ing subsection.

3.2. Reconstruction algorithms

There are several classes of algorithms that provide a sparse
solution of under-determined system setup, which include

1046



convex optimization and greedy methods. We propose a third
method that exploits advantages from both approaches and
shows the best performance in our experiments.

Linear/convex optimization: The first approach to obtain
a sparse solution is the traditional `1 sparse signal recovery
method [7] that is widely used in CS community. LASSO-
styled `1 minimization of [8] is a popular method in this
category regularizing `1 minimization problems. Finding
`1 and LASSO solutions are obtained through disciplined
convex programming with CVX, a MATLAB package for
specifying and solving convex programs [9].

Greedy methods: Another class of sparse signal represen-
tation methods is greedy methods, the orthogonal matching
pursuit (OMP), and the orthogonal least square (OLS). We tai-
lor the OLS sparse signal representation method [2] fit to our
recovery system. The OLS approach is similar to the OMP
but uses a different directional update scheme. The modifi-
cation consists of drawing, at each step, simultaneously el-
ements from each of the dictionaries in the union of spread
dictionaries that provide a sparse representation of the mix-
ture. That is, in our illustration, in each step we select one
column from the spread DFT matrix A. In contrast, the tra-
ditional OLS method selects one entry from the signal dictio-
nary Ω at each step. We also compare the OLS method with
CoSamp [10].

Combined `1,2 method: By combining advantages from
convex and greedy approaches, we can achieve better re-
construction performance than each independent method.
First, a collection of frequency index to represent the mth

channel input ~sm, is estimated from a `1 solution such that
Im = {1 ≤ i ≤ N | |cm,i| > ε}, where ε is a positive thresh-
olding value slightly greater than zero, and cm,i is the ith

entry of the coefficient vector ~cm. Secondly, we compute
a least square solution c̃ using a new dictionary formed by
column vectors that belongs to Im from the modulated ma-
trix Am, minimize

c̃m

∥∥~y −∑i∈Im ~am,ic̃m,i

∥∥
2
, where ~am,i is

the ith column vector of Am. The recovery is performed as,
~sm =

∑
i∈Im c̃m,i ~ωi.

In the general case, the signal can be represented with
an overcomplete dictionary with columns of the form ~dn ={
e−jwnk

}
, where wn = n∆w and ∆w is determined to pro-

vide the decreased frequency resolution. A better approach to
the general case is using Combined `1,2 method to yield an
estimate of the frequencies in the mixture. These frequencies
{wn}Nn=1 are used to generate the columns of the dictionary
~dn =

{
e−jwnk

}
. The augmented measurement matrix will

then consist of the modulated dictionary elements such that
Am =

{
~pm ~dn

}
.

3.3. Comparison with prior works

Here we emphasize several differences between the proposed
ADC system and conventional CS systems including a recent

study [5]. Like CS systems, the proposed system relies on the
use of ±1 sequences. But, in CS, the binary sequences are
used to compute random projections of the input signal in the
analog domain, leading to bandwidth expansion, and multi-
plication is followed by integration to compute a projection.
For the random projection of input signals and integration of
that, an integrator [3] is required before or after modulating
input signals. However, we do not compute projections and
do not use an integrator after modulation. In our system, the
modulation and summing processes do not expand the input
bandwidth which is limited by the LPFs and the SC based S/H
circuit. The modulation in our system is a discrete-time oper-
ation, even though implemented in the analog domain using
SC circuits. The purpose of modulation in the analog front-
end is to maximally decorrelate the dictionaries used to rep-
resent different input channels. The proposed system is im-
plemented using SC based S/H with modulators and an adder.
Thus, the proposed system has more implementable than CS
systems. For example, in CS system, integrators need to be
reset every sample frame, but the proposed system does not
require the reset stage. In addition, the proposed system is
easier to calibrate than CS systems because all operations are
performed in discrete-time domain, and we can implement
the analog front-end with high linearity using SC based S/H
circuits.

4. EXPERIMENTAL RESULTS

In this section, we demonstrate experimental results obtained
by digitizing two-channel sparse input signals. To evaluate
reconstruction fidelity, we define signal-to-reconstruction er-
ror ratio (SRER) between each input and the corresponding
reconstructed signal as SRER(~sm, ŝm) = 20 log10 (‖~sm‖2
/ ‖~sm − ŝm‖2), where ~sm is the mth channel input and its
recovery signal ŝm. To look at the relationship between in-
put signal sparsity versus reconstruction performance, we de-
fine a metric for sparseness measure. We compute a percent-
age of underlying frequency components in the mixture sig-
nal in terms of occupancy (%) =

∑M
m=1Km/ (B T ) ×100,

where Km is the number of frequency components of the
mth channel input ~sm, B is the bandwidth of the mixture
signal, and T is the time interval of sampling. First, we in-
vestigate reconstruction fidelity according to the occupancy
of input signals. We generate multi-tone input signals that
consist of K number of random integer frequency compo-
nents. The frequency components and amplitudes of sinu-
soids are randomly selected within the available bandwidth.
The mixture of all modulated inputs is sampled with the Ny-
quist rate, and we evaluated the reconstruction SRERs after
reconstruction. Fig. 2 illustrates the reconstruction SRERs of
the recovered signals using different recovery methods that
we introduced in Subsecion 3.2. We find empirically greedy
methods outperformed over convex optimization methods for
sufficiently (≤ 60 %) sparse input signals in Fig. 2(a). Yet,
as the occupancy of input signals increases (> 60 %), con-
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(a) ADC without quantization noise (b) ADC with 16-bit quantization noise

0

50

100

150

200

250

300

3 13 25 38 50 63 75 88 100 113 125 138 150

S
R

E
R

 [
d

B
]

Occupancy (%)

L1

LASSO

OLS

CoSamp

L1,2

0

20

40

60

80

100

120

3 13 25 38 50 63 75 88 100 113 125 138 150

S
R

E
R

 [
d

B
]

Occupancy (%)

L1

LASSO

OLS

CoSamp

L1,2

Fig. 2. Experiments with multi-tone inputs. The horizontal axis indicates the occupancy and the vertical axis shows SRERs.

vex minimization methods show better SRERs than greedy
methods. The other experiments are also performed with a
practical ADC model with a 16-bit quantizer and the results
are presented in Fig. 2(b). Since the ADC model has a 16-bit
quantizer, 98 dB signal-to-quantization-noise ratio (SQNR) is
expected under perfect recovery condition. The results with
both ideal and realistic quantizers show the same trend on the
SRER according to the occupancy of input frequency com-
ponents, and they reach to maximum SRERs using the com-
bined `1,2 method. In practice, we need to use framing and
windowing techniques for continuous conversion because the
quasi-stationary property of input signals are not guaranteed.
The recovery process is performed block-wise using a win-
dow function with 50% overlap among neighboring frames.
There are many options to improve the recovery performance
in the continuous conversion, and we list the expected im-
provements by applying different selections for the block-
wise processing in Table 1.

5. CONCLUSION

In this paper, we proposed a new A/D conversion method for
multi-channel inputs using a single-channel quantizer. We
discussed the design of the system, including the selection
of modulating sequences, sampling rate, dictionary selection
to represent the mixture of spread input signals, and recon-
struction algorithms. For this, we proposed different recovery
methods and evaluated their experimental performances. The
proposed system can recover each input signal with high SR-
ERs when the input signals are sufficiently sparse. The sam-
pling rate can be slightly higher than Nyquist rate, which is
determined by the maximum expected bandwidth occupancy
of the signals. In practice, the reconstruction performance de-
pends on the accuracy of quantizers. From the empirical re-
sults, we conclude that sparse signals can share limited band-
width with other sparse signals. Currently, we are working to
answer questions, such as the maximum effective number of
channels, the ratio of bandwidth expansion, and hardware re-

alization in semiconductor scale to make the proposed system
applicable to devices requiring multi-channel ADCs.

Table 1. Expected Improvements
Category Selections Improvements

Window Functions Hanning, Hamming, Sine, Ogg-Vorbis ≤5 dB

Spreading Sequences Maximum, Gold, Kasami, Hadamard ≤5 dB

Dictionary DFT, DCT, MDCT ≥10 dB

Recovery Methods `1, LASSO, OLS, CoSamp, `1,2 ≥10 dB
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