
HYPERPARAMETERS ESTIMATION FOR THE BAYESIAN LOCALIZATION OF THE EEG
SOURCES WITH TV PRIORS
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ABSTRACT

In this work we propose a new Bayesian method for the
non-invasive localization of EEG sources. For this problem,
most of the existing methods assume that the sources are
distributed throughout the brain volume according to smooth
3D patterns. However, this assumption might fail in patho-
logical conditions, such as in an epileptic brain, where it can
occur that the neurophysiological generators are localized in
a narrow region, highly compacted, what originates abrupt
profiles of electrical activity. This new method incorporates
a Total Variation (TV) prior which has been used before in
image processing for edge detection and applies variational
methods to approximate the probability distributions to esti-
mate the unknown parameters and the sources. The procedure
is tested and validated on synthetic EEG data.

Index Terms— EEG Source Localization, Bayesian In-
ference, TV Prior, Variational Methods, Hyperparameters Es-
timation

1. INTRODUCTION

The problem of the EEG source localization has a long tra-
dition in computational neuroimaging [1, 2, 3]. It consists
of providing optimal solutions to the localization of the EEG
sources within the skull based on EEG measurements on the
scalp (observations). Thus, it gives a non-invasive localiza-
tion of the electrical sources. Despite its relevance, this pro-
blem is intrinsically ill-posed as infinite solutions are consis-
tent with the same scalp observations. To overcome this pro-
blem, many methods have been proposed (for reviews see [1,
2, 3] and references therein) and many of these methods have
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used Bayesian estimation. However, previous prior models
assumed an L2-norm for the gradients of dipole intensity,
such as the widely used method LORETA (Low Resolution
Electromagnetic Tomography) [4], Minimum Norm Estima-
tion (MNE) or Restricted Maximum Likelihood (ReML) [5].

For situations in which sources are following abrupt pa-
tterns of electrical activity, as for instance, it occurs in focal-
ized epilepsy (in which it is possible even to have a strong
localization in a single dipole), L2-norm algorithms will un-
derestimate the localization as the strong activity of a single-
dipole is thermalized by its neighborhood.

We need methods for the localization of the focal epileptic
activity, resulting in accurate determination of the seizure on-
set for helping presurgical evaluation. In this paper we present
a new method applicable to these situations and compare its
performance with the well-known LORETA algorithm [4],
which is the control for our method.

The paper is organized as follows. In section 2 we briefly
present the modeling. In section 3 we introduce the Bayesian
formulation of the problem. In section 4 we perform the
Bayesian inference analysis and, as a result, we give a detailed
algorithm for EEG source localization. In section 5 we apply
such algorithm to synthetic data and validate its efficiency.
Finally, conclusions and discussion are given in Section 6.

2. MODEL

We will assume that there are ne scalp electrodes on the scalp
(observations at sensors) measuring the electrical activity
originated by nd � ne dipoles (sources), equally distributed
throughout the brain volume (a 3D grid within a skull).

A standard formulation for the relationship between ob-
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servations and sources is given by the equation

v = Lj + ε, (1)

where v is a vector of size ne× 1 representing the scalp elec-
trical potentials measured by sensors, j is an nd × 1 vector
accounting for the source magnitude and ε is modeling addi-
tive noise. The proportionality matrix between observations
and sources is given by the Lead Field matrixL, which has di-
mensions of ne×nd. To calculate it one needs the positions of
both sensors and sources and knowledge on the specific head
model (for details on our implementation see results).

3. BAYESIAN FORMULATION

The Bayesian formulation of the EEG source localization
problem requires the definition of the joint distribution
p(α, β, j,v) of the observation v, the unknown original
source j and the hyperparameters β and α. To model this joint
distribution we utilize the hierarchical Bayesian paradigm in
which the estimation is performed in two stages. In the first
stage, we form the distributions p(v|j, β) and p(j|α), and
in the second stage the hyperpriors for the hyperparameters
β and α are defined. For that purpose, the joint posterior
distribution is written as

p(α, β, j,v) = p(α)p(β)p(j | α)p(v | j, β). (2)

In our case, noise realizations at the different sensors are con-
sidered independent from each other. For each sensor, the
noise model in Eq. (1) is assumed to be Gaussian with mean
zero and variance equal to β−1. Thus, the distribution of the
observations v given j and β is given by

p(v|j, β) ∝ β
ne
2 exp

[
−β

2
‖ v − Lj ‖2

]
. (3)

For modeling the sources we use a TV prior given by

p(j|α) ∝ α
nd
2 exp [−αTV (j)] , (4)

which has been computed from a partition function with an
empirical validation [6]. The hyperparameter α (the scale
parameter) is weighting the effect that the prior distribution
has in the source localization versus the contribution coming
purely from the observations; the higher the α, the bigger the
prior contribution.

For a three-dimensional grid of dipole locations, we write

TV (j) =
nd∑
i

√
(∆x

i j)2 + (∆y
i j)2 + (∆z

i j)2, (5)

where ∆x
i j, ∆y

i j and ∆z
i j are the first order differences at

dipole i with respect to space directions x, y, z, respectively.
More specifically, they are defined as ∆x

i j ≡ ji−jx(i), ∆y
i j ≡

Fig. 1. Sketch illustrating the three-dimensional directions
for the first order differences for a dipole i.

ji − jy(i) and ∆z
i j ≡ ji − jz(i), where x(i), y(i) and z(i) de-

note the nearest neighbors of i, to the right, front and below,
respectively (see Fig. 1).

At the second stage of the hierarchical Bayesian paradigm,
to model the vector of hyperparameters ω ∈ (α, β) we use
gamma hyperpriors defined by

p(ω) = Γ(ω|aoω, boω) ∝ ωa
o
ω−1 exp [−boωω] , (6)

where aoω > 0 and boω > 0 are, respectively, the scale and
shape parameters of the gamma distribution, which are as-
sumed to be known.

4. BAYESIAN INFERENCE

To perform inference we need to calculate the posterior distri-
bution p(α, β, j|v). Since this posterior can not be found in a
closed form, we will use variational methods to approximate
the posterior to the distribution q(α, β, j) = q(α, β)q(j). In
particular, the variational criterion we use is to find q(α, β, j)
after minimization of the Kullback-Leibler (KL) divergence,
i.e.

CKL(q(α, β, j) ‖ p(α, β, j | v)) =

=
∫
α,β,j

q(α, β, j) log
(

q(α, β, j)
p(α, β, j | v)

)
dαdβdj

=
∫
α,β,j

q(α, β, j) log
(

q(α, β, j)
p(α, β, j,v)

)
dαdβdj

+ log p(v), (7)

which is always non negative and equal to zero if and only if,
q(α, β, j) = p(α, β, j | v).

The form of the TV prior (5) makes the evaluation of the
KL distance difficult, but following [7] we will make use of
an approximation which allows to obtain a quadratic lower
bound for the prior model, ie.

p(α|j) ≥ cM(α, j,u), (8)

where c is a constant, u ∈ (R+)nd is a vector which depends
on the spatial first-order differences of the sources j under the
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distribution q(j) and M(α, j) is given by

M(α, j,u) = αnd/2 (9)

× exp

[
−α

2

nd∑
i

(∆x
i j)

2 + (∆y
i j)

2 + (∆z
i j)

2 + ui√
ui

]
.

Consequently, Eq. (8) allows for a lower bound for the joint
probability distribution, i.e.

p(α, β, j,v) ≥ cp(α)p(β)M(α, j,u)p(v | j, β)
≡ F (α, β, j,u,v), (10)

which by substituting it in Eq. (7), it provides an upper bound
for the KL distance

CKL(q(α, β, j) ‖ p(α, β, j | v)) =

≤ min
u

∫
α,β,j

q(α, β, j) log
(

q(α, β, j)
F (α, β, j,u,v)

)
dαdβdj.

(11)

The minimization of Eq. (11) leads to the following iterative
procedure for finding q(α, β, j) and u:

Algorithm
1. Give the initial estimates for u and q(α, β), named respec-
tively u1 and q1.

2. Do the following until algorithm convergence:

2.1. Find the solution of

qk(j) = arg min
q(j)

(∫
j

∫
α

∫
β

qk(α, β)q(j)

× log
(

qk(α, β)q(j)
F (α, β, j,uk,v)

)
dαdβdj

)
, (12)

which is given by

qk(j) ∝ exp{Eqk(α,β)

[
lnF (α, β, j,uk)

]
}. (13)

At the k iteration the estimation of the distribution of j is
Gaussian with mean given by

Eqk(j)[j] = covqk(j)[j]Eqk(β)[β]LTv, (14)

and covariance

covqk(j)[j]=
(
Eqk(β)[β]LTL+ Eqk(α)[α]DTZ(uk)D

)−1
(15)

2.2. Find the solution of

uk+1 = arg min
u

(∫
j

∫
α

∫
β

qk(α, β)qk(j)

× log
(
qk(α, β)qk(j)
F (α, β, j,u,v)

)
dαdβdj

)
, (16)

which is given by

uk+1
i =

(
∆x
iEqk(j)[j]

)2+
(
∆y
iEqk(j)[j]

)2+
(
∆z
iEqk(j)[j]

)2 +[
covqk(j)[j]D

TD
]
ii

with i = 1, . . . , nd. (17)

2.3. Find the solution of

qk+1(α, β) = arg min
q(α,β)

(∫
j

∫
α

∫
β

q(α, β)qk(j)

× log
(

q(α, β)qk(j)
F (α, β, j,uk+1,v)

)
dαdβdj

)
, (18)

which is given by

qk+1(α, β) = qk+1(α)qk+1(β)
∝ exp{Eqk(j

[
lnF (α, β, j,uk+1)

]
}. (19)

Therefore, qk+1(α) and qk+1(β) are Gamma distributions.
Their expectations are the estimates of the parameters α and
β; the inverse expectations are given by:

(
Eqk+1(α)[α]

)−1 = γα
1
ᾱo

+ (1− γα)
2
∑nd
i

√
uk+1
i

nd
, (20)

and

(
Eqk+1(β)[β]

)−1=γβ
1
β̄o

+(1−γβ)
Eqk(j)

[
‖v−Lj‖2

]
ne

. (21)

Several remarks to the algorithm:

1. In Eq. (13), Eq[f(X)] is denoting the expected value
of f(X) over the distribution q.

2. In Eq. (15) we have definedD≡
[
(Dx)T(Dy)T(Dz)T

]T
a 3 × 1 block matrix in which the blocks Dx, Dy , and
Dz denote convolution matrices nd × nd, such that
when applied to j returns the first order differences
with respect to directions x, y, z.

3. The matrix Z(uk) in Eq. (15) is a 3× 3 block diagonal
matrix defined asZ(uk)≡diag

[
B(uk),B(uk),B(uk)

]
where B(uk) is a nd × nd diagonal matrix of the form

B(uk) = diag

(
1√
uki

)
i = 1, . . . , nd.

4. In Eqs. (20) and (21) we have defined the following
constants: ᾱo ≡ aoα/b

o
α, β̄o ≡ aoβ/b

o
β , γα ≡ aoα

aoα+nd/2
,

γβ ≡
aoβ

aoβ+ne/2
.

5. The expression Eqk(j) [‖v − Lj‖]2 in Eq. (21) is ob-
tained by

Eqk(j) [‖v − Lj‖]2 = ‖ v − LEqk(j)[j] ‖2 +

trace
[
covqk(j)[j]LTL

]
.
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Fig. 2. Visualizarion of the algorithm performance for the
source localization. A: Original sources. B: Sources at first
iteration. C: Final localization performed by our algorithm.
D: Loreta localization. A-D: Depicted 6 different slices, enu-
merated from 4 to 9 in panel A. Red circles are the cross-
sections of the sphere containing the sources. The circle of
the central slice, number 8, is colored in yellow. Noise here is
20 dB.

6. To compute the expectations given by Eqs. (20) and
(21) we have made use of the Gamma distributions
given by

qk+1(α) ∝ αnd/2+a
o
α−1

× exp

[
−α

(
nd∑
i

√
uk+1
i + boα

)]
,

qk+1(β) ∝ βne/2+a
o
β−1

× exp
[
−β
(
Eqk(j) ‖v − Lj‖2

2
+ boβ

)]
.

7. Both γα and γβ take values in [0,1), so they can be in-
terpreted as normalized confidence parameters. When

they are zero, the initial values of the hyperparameters
are not meaningful at all, and at the other limit, when
they approximate to 1, there is no estimation for the hy-
perparameters as they always coincide with the initial
values in the iterative process.

8. As the sensitivity strength for the electrodes decreases
proportionally 1/r2 [8], with r the source-sensor dis-
tance, the situation of deep sources requires the incor-
poration of new weighting corrections, but in this paper
they are not needed as we only have considered super-
ficial sources.

5. EXPERIMENTAL RESULTS

In this section, we apply our algorithm for source localization
to EEG synthetic data and compare its performance with the
classical LORETA [4].

The sources are included in a discrete cubic-grid consist-
ing of 15 transversal slices each one containing 15×15 points
and with an inter-slice distance of d = 0.133. We use a head
model of three-concentric spheres [9], in which all sources are
within a sphere with radius 0.815, thus containing nd = 949
different sources. There are ne = 128 EEG electrodes (sen-
sors) at a distance of radius 1 and with distribution given by
the Geodesic Sensor Net.

Note that for clinical applications the calculation of the L
matrix assumes a more realistic geometry (based on the MRI
volume) but the application of our algorithm is still valid as
L is considered an input parameter; so given another L, the
same algorithm can be applied.

The initial condition for the source activity is given by
j1 = LTv (cf. Eq. (1)) and from here we will consider for
the rest of the variables that their initial condition only depend
on j1. Thus, we take, u1

i =
(
∆x
i j

1
)2 +

(
∆y
i j

1
)2 +

(
∆z
i j

1
)2

(cf. Eq. (17)); ᾱo = nd

(
2
∑
i

√
u1
i

)−1

(cf. Eq. (20) for

γα = 0); α1 = ᾱo; β̄o = ne ‖ v − Lj1 ‖−2 (cf. Eq. (21)
for γβ = 0); β1 = β̄o. And other initial conditions were
considered but our results did not change substancially.

Without loss of generality, we use γα = 0.5 and γβ = 0.5,
so it exists a balance between the hyperparameters estimation
achieved in each iteration and their initial values.

We have simulated three different levels of degradation
noise at 40, 30, and 20 dB.

Fig. 2 illustrates the performance of our algorithm. We
are depicting the sources at only transversal slices, from the
total number of 15, the represented slices have numbers from
4 to 9, Fig. 2A. The circle of the central slice, number 8, is
colored in yellow for all figures. Two point sources at the su-
perficial sphere are originally created (cf. Fig. 2A). Note that
the two sources, although close one to each other, are sepa-
rated by one slice what makes their localization to be difficult.
At the first iteration, sources are plotted in Fig. 2B. After ap-
plying our algorithm, the source estimate is illustrated in Fig.
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2C, which is in agreement with Fig. 2A. For comparison pur-
poses, in Fig. 2D we also plot the localization performed by
the algorithm LORETA [4] for the value of the regularization
parameter chosen with the best MSE. Not only the LORETA
localization is biased but the sources strength is strongly un-
derestimated (about one third of the original strength). Thus,
our method performs better than LORETA.

After algorithm convergence, the final estimation by our
algorithm for 30 dB (not illustrated in Fig. 2) gave a value of
MSE= 32, obtained for α̂ = 11 and β̂ = 38200. For 20 dB,
the performance was MSE= 113 (shown in Fig. 2C and ob-
tained for α̂ = 0.6 and β̂ = 53), whilst the best performance
achieved by LORETA was MSE= 513 (Fig. 2D).

For a quantitative evaluation of the hyperparameters esti-
mates, we have computed the MSE curve for different values
of the ratio α/β. The results are represented in Fig. 3A (20
dB) and Fig. 3B (30 dB). The MSE value corresponding to the
estimated solution (α̂/β̂) is marked with an arrow, thus show-
ing that the estimation performed by our algorithm is near the
minimum of the MSE curves.
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Fig. 3. Quantitative validation of hyperparameters esti-
mation. The MSE between the original localization and the
final estimation was computed for different values of the ra-
tion α/β. A: 20 dB noise. B: 30 dB. A-B: Arrows are indi-
cating the MSE for the estimated solution (α̂/β̂).

The situation for 40dB noise is not shown in any of the
figures, but in this case our Algorithm performs with a negli-
gible Mean Squared Error (MSE= 3.6).

6. CONCLUSIONS

We have presented a new algorithm for EEG source loca-
lization based on Bayesian inference with a Total-Variation
(TV) prior. Such priors can be very useful for the locali-
zation of abrupt sources, as they can occur during seizures.
Importantly, our algorithm does not require hand-tuning of
the hyperparameters as they have been estimated as well by
using the hierarchical Bayesian paradigm and variational ap-
proximation. We have applied our algorithm to synthetic data
and quantitatively validated the accuracy of the hyperparame-
ters estimation. Interesting to remark, the simulated scenario
consisted in two point sources (one slice separation from

each other). The better source localization employed by our
method compared to the classical LORETA might suggest
that our method might work well for detection/localization of
multiple (sparse) sources. Future work will include the com-
parison of our method to other existing methods workable as
well for sparse sources, eg. [10].
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