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ABSTRACT
In a simulation of compressed sensing (CS), one must test
whether the recovered solution x̂ is the true solution x, i.e.,
“exact recovery.” Most CS simulations employ one of two
criteria: 1) the recovered support is the true support; or 2) the
normalized squared error is less than ε2. We analyze these ex-
act recovery criteria independent of any recovery algorithm,
but with respect to signal distributions that are often used in
CS simulations. That is, given a pair (x̂,x), when does “ex-
act recovery” occur with respect to only one or both of these
criteria for a given distribution of x? We show that, in a best
case scenario, ε2 sets a maximum allowed missed detection
rate in a majority sense.

Index Terms— compressed sensing, exact recovery

1. INTRODUCTION

CS is, by definition, a low-cost signal acquisition system, and
being such, it is concerned first and foremost with the guar-
antees of recovering sensed signals [1, 2]. Essentially, CS
takes m measurements of an N � m length signal x by
non-adaptively projecting it onto a set of sensing functions,
e.g., the rows of a matrix Φ ∈ Rm×N . Recovery then finds x̂
from Φ and the measurements u = Φx+n, where n is noise.
The problem is underdetermined, but when x is known to be
sparse, or compressible, recovery becomes possible given cer-
tain conditions are met [1, 2].

Dozens of algorithms have been repurposed or proposed
for CS recovery (see [3–5] for overviews). Their practical
implementation, testing and comparison requires a useful cri-
terion to determine for a given pair (x̂,x) if x̂

?
= x, i.e., “ex-

act recovery.” Two particular criteria have been widely used
when evaluating the performance of CS recovery algorithms.
The first criterion declares x “exactly recovered” when x̂ has
no false alarms or missed detections. Let Ω index the columns
of Φ. Define the support of x by S(x) := {i ∈ Ω : xi 6= 0},
where xi is the ith element of x. If

S(x̂) = S(x) (SC)
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then x is “exactly recovered” with respect to the uniform sup-
port recovery criterion. In this case, each component of the
original signal has the same cost if missed, no matter its value.
This criterion is used in, e.g., [1, 6–10]. The second criterion
involves the `2-norm of the error. If for a 0 ≤ ε2 < 1,

‖x− x̂‖22
‖x‖22

≤ ε2 (ε2C)

then x is “exactly recovered” with respect to the normalized
`2-norm criterion with parameter ε2. This criterion has been
used in, e.g., [11–14].

Unsurprisingly, a particular (x̂,x) can satisfy one crite-
rion but not the other, thus calling into question whether the
results of two CS simulations using these different criteria are
comparable. We now analyze these two criteria, and the role
of ε2, independent of the recovery algorithm one employs.

2. EXACT RECOVERY CRITERIA
In general, neither criterion is necessarily true or false given
the other is true or false. For any x and any ε2 ∈ [0, 1], we
can produce a x̂ such that (SC), but not (ε2C). For instance,
given x, let x̂ = δ(1+

√
2ε2 − ε4)x where δ > 1. Then, (SC)

is true but (ε2C) is not. For any ε2 ∈ (0, 1], given an x with an
element 0 < |xi|2 ≤ ε2‖x‖22, then we can discard it from x to
create a x̂ satisfying (ε2C) but not (SC). There are instances,
however, when one must be true if the other is true. First for
the noiseless condition, and then for noise, we explore the
equivalence between the two criteria. This provides a way to
interpret ε2, and to see when the conditions are equivalent in
a majority sense for a best case scenario.

2.1. Noiseless case ‖n‖ = 0

Given x̂, the weights minimizing the measurement modeling
error are ŷ := arg miny′ ‖u − ΦS(x̂)y

′‖22 = Φ†S(x̂)u. In
this case, if x̂ is composed of the least-squares weights, if
(SC) then for any ε2 ∈ [0, 1] (ε2C). If, however, (ε2C) is true
for ε2 = 0, (SC) necessarily follows. Now we look at the
behavior of these criteria for signals distributed various ways.

Without loss of generality, consider the true support of x
to be its first s elements, i.e, S(x) = {1, 2, . . . , s}. Consider
that our solution x̂ is missing the first 0 < k < s of these

20th European Signal Processing Conference (EUSIPCO 2012) Bucharest, Romania, August 27 - 31, 2012

© EURASIP, 2012  -  ISSN 2076-1465 979



0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio Missing Elements (100 k/s)

P
ro

b
. 
E

x
a
c
t 
R

e
c
. 
w

rt
 (

e2
C

) 
b
u
t 
n
o
t 
(S

C
)

0.250.11e−2

 

 

100

400

2000

(a) Zero-mean Gaussian
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(b) Laplacian
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(c) Uniform
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(d) Bimodal Gaussian

Fig. 1. Best case scenario probability of exact recovery with respect to (ε2C) but not (SC) for sparse vectors distributed in four
ways, for various ε2 (labeled) and sparsities s (legend). Empirical results in (b-d) are averaged over 1000 trials.

elements, i.e., for n ∈ {1, . . . , k}(x̂n = 0), but that for n ∈
Ω\{1, . . . , k}(x̂n = xn). This means S(x̂) ⊂ S(x), i.e.,
x̂ has no false detections, and that the missed detections do
not influence our estimation of the values of the recovered
support. We call this the “best case scenario.” In this case,
(ε2C) but not (SC) becomes

1

‖x‖22

k∑
n=1

x2n ≤ ε2. (1)

We now find the probability of (ε2C) but not (SC) for a
few distributions. Consider the s non-zero elements of x to
be distributed Rademacher, i.e., iid equiprobable in {−1, 1}.
This type of sparse signal is often used in simulations of CS
recovery [6, 11, 12]. In this case, ‖x‖22 = s, so

P

{
1

‖x‖22

k∑
n=1

x2n ≤ ε2
}

=

{
1, k/s ≤ ε2

0, else.
(2)

This shows for Rademacher sparse signals how to interpret
ε2 in the best case scenario: it is the ratio of the maximum
number of missed detections to the signal sparsity. Thus, in
the recovery of signals distributed Rademacher, as long as s <
ε−2, if (ε2C) then (SC). Otherwise, if k = 1, (ε2C) can be
true while (SC) is not. For the test problems in [12], s < 800

and ε2 = 10−4, thus it is clear for their simulations that a
solution satisfying (ε2C) must also satisfy (SC). However, if
the sparsity s > 10000 for this ε2, then the two conditions are
no longer equivalent.

Now consider the s non-zero elements of x ∼ N (0, σ2
y),

i.e., iid zero-mean Gaussian with variance σ2
y > 0. (Note the

distinction between the variance of all the elements in x, and
just its non-zero elements in y.) This is another signal dis-
tribution used extensively in testing CS recovery algorithms,
e.g., [3,12,14]. Define the independent random variables (rvs)

Yk :=

k∑
n=1

[xn/σy]
2 ∼ χ2(k) (3)

Zs−k :=

s∑
n=k+1

[xn/σy]
2 ∼ χ2(s− k) (4)

both of which are distributed chi-squared with the argument
as a parameter. Notice that ‖x‖22 = (Yk + Zs−k)σ2

y . Since
Yk and Zs−k are independent, Fk,s−k := [Yk/k]/[Zs−k/(s−
k)] ∼ F(k, s − k), or F-distributed with parameters k and
s − k. Thus, the probability of (ε2C) but not (SC) in the best

980
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(a) Rademacher
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Fig. 2. Best case scenario probability of exact recovery by (ε2C) given (SC), as a function of ε2 (s = 400) for measurements in
zero-mean Gaussian white noise at three signal to noise ratios (σ2

y/σ
2
v , legend) distributed in four ways. Empirical results in (c,

d) are averaged over 1000 trials.

case scenario for an s-sparse signal distributed N (0, σ2
y) is

P

{
1

‖x‖22

k∑
n=1

x2n ≤ ε2
}

= P

{
Yk <

ε2

1− ε2
Zs−k

}
= P

{
Fk,s−k <

ε2

1− ε2
1− k/s
k/s

}
. (5)

Figure 1(a) plots (5) for three sparsities and ε2. It is
clear that the two exact recovery conditions become iden-
tical as ε2 becomes small. If k/s > ε2 then for s ≥ 2k
P {Fk,s−k < 1 + δ} > 0.5 for δ > 0. Thus, here the param-
eter ε2 prescribes the maximum number of missed support
elements in the best case scenario before (ε2C) given not
(SC) is false in a majority sense for sparse signals distributed
N (0, σ2

y). Figure 1(b-d) show empirically-derived (also best
case scenario) probabilities for other distributions, all of
which have similar behavior. We see for all distributions
tested and s ≥ 2k, that when k/s < ε2, (ε2C) but not (SC) is
true in a majority sense.

2.2. Noisy case ‖n‖ > 0

Unlike for the noiseless case, with a least-squares solution
in the noisy case, if (SC) then not necessarily (ε2C) for any
ε2 ∈ [0, 1]. To see this, assume (SC), and that x̂ is built from

ŷ = arg miny′ ‖u−n−ΦS(x̂)y
′‖22 = Φ†S(x)(u−n). Define

y as the non-zero elements of x. In this case, (ε2C) becomes

‖y −Φ†S(x)u‖
2
2

‖y‖22
=
‖Φ†S(x)n‖

2
2

‖y‖22
≤ ε2. (6)

Hence, for any ε2 ∈ (0, 1] we can find an n such that (SC) is
true but not (ε2C). As in the noiseless case, though, only for
ε2 = 0 if (ε2C) then (SC).

We now find the probability of (ε2C) whether or not (SC)
for a few signal distributions. Define v := Φ†S(x)n, and as-
sume its |S(x)| elements are iidN (0, σ2

v) and independent of
y. Define the chi-squared-distributed rv

Vs :=

s∑
n=1

[vn/σv]
2 ∼ χ2(s). (7)

If the s non-zero elements of x are distributed Rademacher,
then the probability of (ε2C) given (SC)

P

{
1

‖y‖22

s∑
n=1

v2n ≤ ε2
}

= P

{
Vs <

ε2s

σ2
v

}
. (8)

Since P {Vs < s+ δ} > 0.5 for δ > 0, if ε2 ≥ σ2
v then, given

(SC) is true, (ε2C) is true in a majority sense.
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(a) Rademacher (b) Zero-mean Gaussian

(c) Laplacian (d) Uniform

Fig. 3. Best case scenario probability of exact recovery with respect to (ε2C) but not (SC) for sparse vectors (s = 400)
distributed in four ways, and measurements in zero-mean white Gaussian noise, at three sparse signal to noise ratios (σ2

y/σ
2
v ,

legend) and two ε2 (labeled). Empirical results in (b-d) averaged over 1000 trials.

Now, assume the s non-zero elements of x ∼ N (0, σ2
y),

and still independent of v. Define

Xs :=

s∑
n=1

[xn/σy]
2 ∼ χ2(s). (9)

The ratio Vs/Xs is an F-distributed rv

Ws,s := Vs/Xs ∼ F(s, s). (10)

Thus, the probability of (ε2C) given (SC) is

P

{
1

‖y‖22

s∑
n=1

v2n ≤ ε2
}

= P

{
Ws,s <

σ2
y

σ2
v

ε2

}
. (11)

Here we see that since P {Ws,s < 1 + δ} > 0.5 for δ > 0,
if ε2 ≥ σ2

v/σ
2
y , given (SC) is true, then (ε2C) is true in a

majority sense.
For three signal to noise power ratios, σ2

y/σ
2
v , Figure 2

shows the probability of exact recovery with respect to (ε2C)
given (SC) as a function of ε2: (a) shows (8); (b) shows (11);
and (c,d) show empirical results for y distributed Laplacian
and Uniform. As ε2 increases, it becomes easier to meet (ε2C)
given (SC); but as noise increases, ε2 must likewise increase.

Now, consider (ε2C) is true but not (SC). As before, con-
sider that x̂ is missing the first 0 < k < s of the true ele-
ments, n ∈ {1, . . . , k}(x̂n = 0), but n ∈ Ω\{1, . . . , k}(x̂n =
xn + vn). This “best case scenario” means we have no false
detections, and that for the support recovered, we find their
exact values perturbed only by the noise. Thus, assuming x
and v are independent, (ε2C) given not (SC) becomes

1

‖x‖22

[
k∑

n=1

x2n +

s−k∑
n=1

v2n

]
≤ ε2. (12)

Define the rv

Gs−k :=

s−k∑
n=1

[vn/σv]
2 ∼ χ2(s− k). (13)

When the non-zero elements of x are distributed Rademacher,
and vn ∼ N (0, σ2

v), (ε2C) given not (SC) becomes

P

{
1

‖x‖22

[
k∑

n=1

x2n +

s−k∑
n=1

v2n

]
≤ ε2

}

= P

{
Gs−k <

ε2s− k
σ2
v

}
. (14)
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Since P{Gs−k < s − k + δ} > 0.5 for δ > 0, we see (ε2C)
is false in a majority sense when (ε2s − k)/σ2

v < s − k.
Figure 3(a) shows (14) as a function of k/s for two different
ε2 and three signal to noise power ratios; and Fig. 3(b-d)
show empirical results for other distributions. We see here
that as the noise power increases for a given ε2, in the best
case scenario, the probability that (ε2C) is true in a majority
sense given (SC) is false decreases.

3. CONCLUSION
Regardless of whether CS is applied in practice to exactly
sparse signals, much significant work in simulating, test-
ing and comparing CS recovery algorithms has used exactly
sparse signals, and either (ε2C) or (SC) as a criterion for
“exact recovery” [1, 6–14]. The significance of ε2, and the
relationship between (ε2C) and (SC) had yet to be analyzed.
In this paper, we show that ε2 can be interpreted within the
context of CS recovery in a best case scenario as a maximum
acceptable missed detection rate in a majority sense, in both
noiseless and noisy measurements.

For noiseless measurements, if the weights of the recov-
ered solution are least-squares optimal, then (SC) → ∀ε ∈
[0, 1](ε2C). Only if ε2 = 0, (ε2C) → (SC). For s-sparse
signals with non-zero elements distributed Rademacher, and
‖n‖ = 0, if s < ε−2, (ε2C) → (SC). When the measure-
ments have zero-mean WG noise with variance σ2

v , if ε2 >
σ2
v , then in the best case scenario P{(ε2C)|(SC)} > 0.5. And

if ε2 < σ2
v + (k/s)(1 − σ2

v), then P{(ε2C)|¬(SC)} < 0.5.
For sparse signals with non-zero elements distributed zero-
mean Gaussian and variance σ2

y , when there is no measure-
ment noise, if k/s < ε2 and s ≥ 2k, then in the best case
scenario P{(ε2C)|¬(SC)} < 0.5. When noise is in the mea-
surements, as above, if ε2 > σ2

v/σ
2
y , then in the best case

scenario P{(ε2C)|(SC)} > 0.5. This suggests for sparse sig-
nals distributed zero-mean Gaussian or Rademacher, a useful
range over which one should define the parameter ε2 such that
exact recovery by (SC) and (ε2C) are equivalent in a majority
sense in a best case scenario when s ≥ 2k, and k is the num-
ber of elements a solution can miss yet still be considered an
“exact recovery”:

ε2 ∈
(
σ2
v

σ2
y

,
k

s
+ σ2

v (1− k/s)
)
. (15)

Our future work explores how particular CS recovery al-
gorithms preclude certain pairs (x, x̂) for which one condi-
tion is true and the other is false with high probability. Fur-
thermore, we are investigating the equivalence of other “exact
recovery” criteria used in CS simulations for signals that are
compressible rather than exactly sparse.
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