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ABSTRACT

This paper introduces a new method based on parity-check
matrix for reconstructing the output of an Oversampled Fil-
ter Bank (OFB) when sub-band vectors in different time in-
stances are subject to erasures with arbitrary patterns (i.e. in-
stantaneous erasure). Using the property of parity-check ma-
trix, in this method, the erased samples of the sub-band vec-
tors are recovered in the sub-band domain and then they are
fed to the synthesis filters for output perfect reconstruction.
In particular, we provide the theoretical sufficient conditions
on OFB structure in order for this approach to be applicable
for (maximum) erasure recovery. Furthermore, we modify the
proposed reconstruction method in the presence of quantiza-
tion noise and suggest an approach based on consistent recon-
struction. We will also provide simulation results to evaluate
the performance of this reconstruction method.

Index Terms— Instantaneous Erasure, Consistent Recon-
struction, Oversampled Filter Bank, Parity-Check Matrix

1. INTRODUCTION

Oversampled Filter Banks (OFBs) can be considered as er-
ror/erasure correcting codes which act over the field of real
numbers [1, 2, 3]. More specifically, this is because the pro-
cess of injecting redundancy for potential error/erasure cor-
recting purposes happens on real sequences before quantiza-
tion which is in contrast with classic finite field and binary
codes. Nevertheless, it has been shown that there exist several
parallelisms between OFBs and binary codes where OFBs
generalize different concepts such as syndrome and parity-
check matrix from binary domain to the real field [2]. In this
paper, we intend to exploit the properties of parity-check ma-
trix in OFBs for output perfect reconstruction under the con-
dition that samples of sub-band signals are subject to instan-
taneous erasure [4]. Instantaneous erasure accounts for a sit-
uation when samples of different sub-band vectors are erased
based on different erasure patterns. Application of this type of
erasure can be envisaged in a packet loss scenario when dur-
ing packetization, sub-band samples are properly interleaved,
or when erasures are introduced deliberately in the sub-band
as part of a data rate reduction strategy similar to puncturing.

We have previously presented a two-step method for out-
put reconstruction under the above conditions [4]: In the first
step, synthesis filters are changed based on the current erasure
pattern and output is reconstructed. In the second step, the
newly reconstructed outputs are used to recover erased sub-
band samples in the most recently received sub-band vector.
Since on the synthesis side, output samples can not be re-
constructed perfectly in presence of possible noises such as
quantization, this method suffers from catastrophic degrada-
tion specially for large number of erasures [4]. Here, we pur-
sue another approach where the erased samples in sub-band
vectors are first recovered using parity-check matrix. Thus,
the output can be reconstructed using the original synthesis
filters. To achieve this goal, we utilize the orthogonality of
parity-check matrix and analysis polyphase matrix. Under
ideal circumstance (absence of any noise), we find the the-
oretical conditions that should be met by OFB in order to re-
cover the erased samples and reconstruct the output. Next,
by introducing quantization noise in the sub-band, we mod-
ify the proposed method such that it would result in the con-
sistent reconstruction [5] of erased sub-band samples. The
modification of the proposed method is based on the parity-
check test of the reconstruction method described recently [6]
in an error correction application of OFB. There, the authors
propose an output reconstruction approach using a subopti-
mal (and thus less computationally intensive) ML estimator
and the parity-check test is used to eliminate outputs which
are not consistent. Using simulation results, we evaluate the
performance of the reconstruction method based on parity-
check matrix and show that it can improve the resilience of
an OFB against erasure. The rest of this paper is organized as
follows. In Section 2, we review the reconstruction method
we have proposed before and then we lay out the new recon-
struction method based on parity-check matrix. In Section 3,
we find the conditions on OFB structure which will guarantee
the applicability of the parity-check matrix for maximum era-
sure recovery. In Section 4, the parity-check matrix method
is modified in the case of quantization noise in sub-band do-
main. Section 5 is dedicated to simulation results and finally
conclusions are made in Section 6.
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Fig. 1. [4] Illustration of the reconstruction based on synthesis
filters change for an instantaneous erasure at time n0 = m0K.
First, based on the current erasure pattern, the new synthe-
sis filters are calculated and one K-sized block of output is
reconstructed (First Step). Then the erased samples are re-
covered by passing the reconstructed output through the local
analysis filters (Second Step) and a new version of sub-band
vector is generated (snew[m]). This new version will replace
s[m] for reconstructing the output signal in the future.

2. OUTPUT RECONSTRUCTION WITH
INSTANTANEOUS ERASURE IN SUB-BAND

DOMAIN

Suppose an OFB with N bands and downsampling rate K <
N where all filters have length L = MK for an integer M .
Under the instantaneous erasure condition, we assume a trans-
mission scenario where the current sub-band vector at time
n0 = m0K is received with e samples erased (0 ≤ e ≤
N−K). Without loss of generality, we further assume that no
erasure has happened before, so the current sub-band vector
is the only one with erasure so far. Under this circumstance,
the following two approaches can be utilized for output re-
construction.

2.1. Reconstruction Based on Synthesis Filters Change

This method has been depicted in Fig.1. In this figure, E(z)
and R(z) refer to the analysis and synthesis polyphase matri-
ces respectively. As it can be seen, in the first step, the new
synthesis filters are calculated based on the current erasure
pattern such that the new synthesis filters satisfy the instan-
taneous time-domain perfect reconstruction equations [4].
R̆(z) refers to the polyphase matrix of these new synthesis
filters. Next, by passing the newly constructed output samples
through local analysis filters, the erased samples of current
sub-band vector are recovered and will be used for recon-
struction of output signal in future. It is obvious that in order
for OFB to be able to reconstruct the required output sam-

ples before arriving a new sub-band vector, some constraints
should be applied on OFB’s delay. Additionally, some condi-
tions should also be met for existence of synthesis filters. The
following theorem provides such sufficient conditions on the
OFB structure.

Theorem 1 [4]: A stable OFB with analysis polyphase
matrix E(z) =

∑M−1
i=0 Eiz

−i is robust to instantaneous era-
sure at the current time instance and the output can be re-
constructed using the above method if both of the following
conditions are satisfied:

(i) E0 remains full column rank after eliminating the rows
which correspond to the erasure pattern.

(ii) Ē(z) which is obtained by deleting the rows corre-
sponding to the erasure pattern at time n0 from E(z), has a
stable inverse.

Condition (i) ensures that for any erasure pattern, E(z)
has an inverse and a set of synthesis filters exits and condition
(ii) guarantees the stability of such synthesis filters.

2.2. Reconstruction Based on Parity-Check Matrix

Suppose there exists an (N − K) × N matrix C(z) =∑M ′

i=0 Ciz
−i such that C(z)E(z) = 0. In absence of

any noise, this results in C(z)s(z) = 0. Here, s(z) indi-
cates the z-transform of sub-band vector s[n] (defined as
s[n] = [s1[n], s2[n], · · · , sN [n]]

T ) and is related to the in-
put signal by s(z) = E(z)u(z). Furthermore, u(z) =
[X1(z), · · · , XK(z)]T where Xi(z) =

∑∞
m=−∞ x[mK +

i − 1]z−m. The relation between parity-check matrix C(z)
and sub-band vector in time-domain can be written as

M ′∑
i=0

Cis[n− i] = C0s[n] +

M ′∑
i=1

Cis[n− i] = 0. (1)

Under the conditions we assumed at the beginning of this sec-
tion, if there is any lost samples in s[n] (the current sub-band
vector received on the synthesis side), the erased samples can
be recovered by finding the solution to the following system
of equations

C0s[n] = −
M ′∑
i=1

Cis[n− i], (2)

where erased samples appear as unknowns. Depending on
the number of erasures, the above system might become an
over-determined one. However, since the erased samples are
removed from a sub-band vector which satisfies (1), the re-
sulting over-determined system will always have a solution.
Here again, it is realized that for maximum erasure recovery
(when e = N − K) using (2), some conditions should be
assumed on the OFB structure. These conditions can be sum-
marized as follows.

c1: For the given OFB, there should exist a causal and FIR
parity-check matrix C(z) =

∑M ′

i=0 Ciz
−i. This requirement

results directly from (2).
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c2: Any (N −K)× (N −K) sub-matrix of C0 in C(z)
should be non-singular. This requirement again results from
(2) and the maximum erasures recovery.

In the next section, we find the conditions on OFB struc-
ture which will guarantee the existence of the above require-
ments.

3. CONDITIONS ON OFB FOR RECONSTRUCTION
BASED ON PARITY-CHECK MATRIX

We start off by showing that c1 is true for any OFB. Our
proposition is based on Proposition 1 in [2] where the au-
thors proved existence of an FIR parity-check matrix for any
FIR OFB. Although such parity-check matrix can always be
made causal by proper number of shifts to the right, here by
a slight modification in the proof, we show the causality can
be achieved directly too. This will prove instrumental in the
results which we will present later on.

Proposition 1: For any causal, FIR OFB with N × K
analysis polyphase matrix E(z) with normal rank K, there
exists an (N −K) × N FIR and causal parity-check matrix
C(z) such that C(z)E(z) = 0.

Proof : Let us assume E(z) is a polynomial matrix in z.
As a result, it admits a Smith decomposition form [7] based
on which we can write

E(z) = V(z)D(z)W(z) = V(z)

[
Λ(z)

0

]
W(z), (3)

where in above V(z) and W(z) are unimodualr matrices and
Λ(z) is a K × K diagonal matrix. In addition, all polyno-
mial matrices on both sides of equality are written based on
z. Now since Smith form is an equality, it should be true for
any values of z thus if we change z to z−1, the equality still
holds (except maybe for z = 0). As a consequence, we can
claim for any causal FIR polynomial matrix, the Smith form
can be written in terms of z−1. Because V(z) is unimodular,
causal and FIR, its inverse is unimodular, causal and FIR too.

So, one can partition U(z) = V−1(z) =

[
U1(z)
C(z)

]
, where

U1(z) and C(z) are of size K×N and N−K×N . Besides,
C(z)E(z) = 0, thus the result follows. �

Corollary 1: In Proposition 1, C0 in C(z) has full row
rank.

Proof: This results from unimodularity of U(z) and
the fact that for any square FIR unimodular matrix such as
U(z) =

∑L′

i=0 Uiz
−i, U0 is non-singular [8]. So since C0

is a sub-matrix of U0, it will have full row rank accordingly.
Using Lemma 1 in [9], the order of C(z) in Proposition

1 can also be upper bounded by the following proposition. In
what follows, Order(·) indicates the highest power of z−1 in
the polynomial matrix/vector that appears between the paren-
theses.

Proposition 2: For a causal, FIR and full column rank
E(z), let ri ∈ [1, N ] for i = 1, · · · , N and cj ∈ [1,K] for

j = 1, · · · ,K be two series of integers such that

Order(rowr1E(z)) ≥ · · · ≥ Order(rowrN E(z))

Order(colc1E(z)) ≥ · · · ≥ Order(colcKE(z)).

For the parity-check matrix C(z) =
∑L′

i=0 Ciz
−i defined

based on Proposition 1, we have

L′ ≤ min

{
K−1∑
i=1

Order(rowriE(z)),
K−1∑
j=1

Order(colcjE(z))

}
.

(4)
Proof: From (3), defining unimodular matrix U(z) =

V−1(z) yields U(z)E(z) =
[
(Λ(z)W(z))

T
,0
]T

. With-
out loss of generality, let us assume E(z) can be partitioned

as E(z) =

[
Ea(z)
Eb(z)

]
where Ea(z) is square K × K and

non-singular. Define

A(z) =

[
Ea(z) 0K×N−K
Eb(z) IN−K

]
. (5)

A(z) is a square N × N matrix which is non-singular and
det(A(z)) = det(Ea(z)). We can also write U(z)A(z) =
T(z) where T(z) is non-singular too. Since U(z) is unimod-
ular, Order(det(T(z))) = Order(det(A(z))) = Order(det(Ea(z))).
Now using the same reasoning as Lemma 1 in [9] which we
omit for the sake of brevity, one can show Order(U(z)) is
upper bouned as (4). Since C(z) is a sub-matrix of U(z), it
will be upper bounded as (4) too. �

Based on Proposition 1 and Corollary 1, it is concluded
that condition c1 is satisfied for all perfect reconstruction FIR
OFBs. In the the following we provide sufficient conditions
for satisfying c2.

Lemma 1: If E0 in E(z) remains full column rank af-
ter removing a row, then the corresponding column of C0 in
C(z) from Proposition 1 can not be zero.

Proof: Since C(z)E(z) = 0, hence C0E0 = 0. Now if
there is any zero column in C0, one gets C′0E

′
0 = 0 where

C′0 and E′0 are obtained by removing the zero column from
C0 and corresponding row from E0 respectively. Because
E′0 has full column rank, removing a row from E0 will de-
crease the dimension of its orthogonal complement subspace
by one. So from C′0E

′
0 = 0, it is concluded that C′0 is not

full row rank. Thus there exists an (N −K)×1 vector a 6= 0
such that aTC′0 = 01×(N−1). However, from last equality
on can also get aTC0 = 01×N . So C0 is not full row rank
which is a contradiction according to Corollary 1.�

Proposition 3: If K × K sub-matrices of E0 in E(z)
are non-singular, then condition c2 will be satisfied for C0

in C(z) from Proposition 1.
Proof: Let us assume there is a sub-matrix of C0 which

is singular. Without loss of generality let C0 = [C0,a|C0,b]
where C0,a is (N −K) × (N −K) and singular. Let E0 =[
ET

0,a|ET
0,b

]T
where E0,b is K ×K and non-singular. Since
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C0,a is singular, using elementary column operations (and
corresponding row operations on E0,a such that C0E0 = 0
still holds), it is possible to make one of its columns zero.
However, this is a contradiction based on Lemma 1, because
E0,b is non-singular and after removing the corresponding
row from E0,a, E0 will still have full column rank. �

Finally, the result of this section can be summarized in the
following theorem.

Theorem 2: A stable OFB with analysis polyphase matrix
E(z) =

∑M−1
i=0 Eiz

−i is maximally robust to instantaneous
erasure and the output can be reconstructed using the parity-
check matrix method if E0 remains full column rank after
eliminating the rows corresponding to the erasure pattern.

4. INTRODUCING QUANTIZATION NOISE

In any transmission scenario, there is at least one source of
noise due to quantization. In the presence of quantization
modeled as an additive noise, the relation between parity-
check matrix and sub-band vector will be C(z)sq(z) =
C(z)q(z) where sq(z) = s(z) + q(z). Furthermore, q(z) is
the z-transform of q[n] = [q1[n], · · · , qN [n]]

T where qi[n]
represents the quantization noise component added to each
sub-band sample. In time-domain, one gets

C0sq[n] +

M ′∑
i=1

Cisq[n− i] =

M ′∑
i=0

Ciq[n− i]. (6)

It is fairly easy to see that in case of any erasure in sq[n],
the previous method of solving the system of equations can
not be applied here. So, in order to be able to use the parity-
check matrix method in practical situations, it is imperative
to modify the method properly. To that end, we suggest a
modified method as we describe in the following.

Let us define a vector of intervals [sqmin
[n], sqmax

[n]]
such that for each sub-band sample si[n], we have si,qmin

[n] ≤
si[n] ≤ si,qmax

[n] where si,qmin
[n] and si,qmax

[n] refer to
the lower and upper limit of the quantization interval to
which si[n] belongs. We assume interval vectors containing
perviously received sub-band vectors are available on the syn-
thesis side. For example for a quantizer that outputs midpoint
values, the interval vector can be easily found for a newly re-
ceived sub-band vector by adding and subtracting half of the
quantizer’s step-size to each sample. Since C(z)s(z) = 0,
we must have [6]

0 ∈
M ′∑
i=0

Ci [sqmin [n− i], sqmax [n− i]] . (7)

For each element ckij of Ck in C(z) and interval [a, b], define

fmax(c
k
ij , [a, b]) =

{
a if ckij < 0

b if ckij ≥ 0
, (8)

and

fmin(c
k
ij , [a, b]) =

{
b if ckij < 0

a if ckij ≥ 0
. (9)

For any i = 1, · · · , N −K, from (7), it yields

M ′∑
k=0

N∑
j=1

ckijfmax(c
k
ij , [sj,qmin

[n− k], sj,qmax
[n− k]]) ≥ 0 (10)

M ′∑
k=0

N∑
j=1

ckijfmin(c
k
ij , [sj,qmin

[n− k], sj,qmax
[n− k]]) ≤ 0. (11)

Now, using interval arithmetic, for each erased value, one
can find an interval which satisfies (10) and (11). Obviously,
the desired erased quantized value will reside in this inter-
val and thus can be recovered. In case when the resulting
interval from system of inequalities of (10) and (11) encom-
passes more than one possible quantized values, the average
of all quantized values would be announced as the recovered
sample which could be considered as the best answer in av-
erage. Also notice that when there is more than one erasure,
instead of solving the inequalities (10) and (11) directly for
the original bank, one might consider a reduced system for
which the number of erasures is one. More precisely, if there
are e erasures in the current sub-band vector, we can consider
an OFB with analysis polyphase matrix Ee(z). Ee(z) is an
(N−e+1)×K matrix obtained by keeping the N−e channels
which are erasure-free and one of the channels that has been
received with erasure. Under this circumstance, the system at
hand can be treated as if there is only one erasure. Finally,
this can be repeated e times to recover all the erased samples.
During simulations, we adopted this method as it gave better
results.

5. SIMULATION RESULTS

To validate the modified reconstruction method based on
parity-check matrix, we considered a scenario where a Gauss-
Markov source with variance 1 and correlation coefficient
0.95 is being encoded and decoded by analysis and synthesis
banks successively in the presence of quantization noise. The
OFB used was a Unimodular bank with N = 16, K = 9
and L = 18 in which E0 of analysis polyphase matrix is a
real-valued DFT matrix [10]. Each sub-band sample is quan-
tized with a 4-bit uniform quantizer. Then each sub-band
vector is subject to an erasure pattern for a specified erasure
number. Each erasure pattern is also selected randomly with
uniform distribution among all possible erasure patterns. To
reconstruct the output, first the parity-check matrix was cal-
culated. To find the parity-check matrix, we used a method
based on QR factorization of Sylvester matrix of analysis
filters [11]. Then, the system of inequalities of (10) and (11)
was solved for the erased samples using a Matlab ToolBox
called INTLAB [12]. To reduce the reconstruction error, if
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Table 1. SNR (dB) Resulting from Parity-Check matrix, Syn-
thesis Filter Change and Linear Prediction Reconstruction
Methods for Different Number of Erasures

Number N = 16, K = 9, L = 18

of Synthesis Filters Parity-Check Linear
Erasures Change [4] Matrix Prediction

0 10.34 10.34 10.34

1 9.21 8.06 8.04

2 6.71 6.58 6.57

3 2.57 5.49 5.55

4 −2.12 4.56 4.66

5 −5.94 3.94 3.98

6 −8.01 3.2 3.39

7 −9.08 2.7 2.83

the resulting recovered interval was out of possible bounds
of sub-band samples (i.e. interval [−3, 3]), the recovered
sub-band samples would be announced as zero. At the end,
the output was reconstructed by passing the sub-band vectors
through the synthesis bank.

The performance of the parity-check matrix reconstruc-
tion method has been displayed in Table 1 in terms of the SNR
values of the reconstructed output signal versus different era-
sure numbers. These values have been obtained by calculat-
ing the error per-sample of an input signal with length 10, 000
for the given erasure number and then repeating the experi-
ment 100 times and finally averaging over all iterations. The
performance of the reconstruction method based on chang-
ing the synthesis filters has also been tabulated in Table 1.
For comparison, this table also shows the performance of a
reconstruction scheme where the erased samples are recov-
ered by using an FIR Linear Prediction (LP) filter with order
10 applied on previously received sub-band samples. As it
can be seen, the performance of three methods are almost the
same for small number of erasures. However, for large num-
ber of erasures, the parity-check matrix gives better results
with respect to synthesis filter change method and its perfor-
mance is comparable to linear prediction scheme. It should be
noted that the reason that LP scheme and parity-check method
give similar results lies behind the fact that the nature of both
methods is almost the same where a filter is applied on previ-
ously received sub-band samples to recover an erasure. In ad-
dition, LP method has an advantage over parity-check matrix
because the coefficients of LP filter are optimized based on re-
ceived data. So in their calculation, existence of quantization
noise is incorporated whereas parity-check matrix method is
optimum when no noise is present. This could be considered
as the reason behind the slightly better performance of LP
over parity-check matrix.

6. CONCLUSION

In this paper, we proposed a new reconstruction method for
recovering erased samples of sub-band vector under instan-
taneous erasure premise based on parity-check matrix calcu-
lation. We obtained the sufficient condition on OFB struc-
ture for maximum erasure recovery. Then by introducing the
quantization noise in the sub-band domain, we modified the
reconstruction method which would result in consistent re-
covery of erased samples. The simulation results showed that
parity-check matrix method can improve the performance of
output reconstruction of OFB with instantaneous erasure spe-
cially when the number of erasures is large.
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