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ABSTRACT

In this paper the problem of removing Ballistocardiogram (BCG)

artifact from EEG signal is addressed. BCG removal is an impor-

tant task in analysis of simultaneous EEG-fMRI data. We propose a

new method by combining independent component analysis (ICA)

and discrete Hermite transform (DHT) for this purpose. Discrete

Hermite transform is a powerful technique which is able to model

a signal with no assumption about its shape. This feature makes

DHT an appropriate tool to be combined with ICA for removing

the BCG artifact. We show that the proposed hybrid ICA-Hermite

transform can compensate for the existing drawbacks of the two

methods, when applied separately. A significant improvement over

conventional methods is demonstrated with synthetic data, and sup-

ported by preliminary work with real EEG.

Index Terms— Artifact removal, Ballistocardiogram, Indepen-

dent component analysis, Discrete Hermite transform.

1. INTRODUCTION

Simultaneous recording of electroencephalography (EEG) and

functional magnetic resonance imaging (fMRI) is a powerful tech-

nique to study the human brain function. The first modality, EEG,

represents the scalp potentials. The recorded voltage by EEG re-

flects the synaptic activities inside the brain with high temporal

resolution in the order of millisecond. The second modality, fMRI,

shows local hemodynamic changes in the brain which is known as

blood oxygenation level dependent or BOLD signal. In contrast to

EEG, fMRI provides a signal with high spatial resolution on the

order of millimeter and low temporal resolution on the order of

second. Fusion of these two modalities would allow researchers to

combine high resolution spatial and temporal mapping of mental

activities.

A major limitation of simultaneous EEG-fMRI is the effect of

artifacts introduced in the EEG. EEG signals acquired in the mag-

netic field suffer from two major artifacts, gradient artifact and bal-

listocardiogram. The gradient artifact results from switching of

magnetic field gradient used for image recording. This artifact is

distinguished by large amplitude and high frequency content; More-

over, it does not show significant variability over time. These char-

acteristics allow one to subtract the gradient artifact using an av-

erage template approach [1]. The EEG signal after removing the

gradient artifact shows another severe artifact known as ballistocar-

diogram or BCG. The ballistocardiogram is caused by movements

of the EEG electrodes in the magnetic field. There is a small move-

ment in each electrode during the cardiac pulsation and as a result, a

voltage will be induced into each electrode. The ballistocardiogram

artifact obscures EEG at alpha frequencies (8–13 Hz) and below,
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with amplitudes around 150 µV inside a magnetic field with the

strength of 1.5 T [2].

The task of removing BCG artifact plays a major role for a suc-

cessful EEG-fMRI integration. Different data recording techniques

and signal processing algorithms have been developed to eliminate

this artifact. For example, Allen et al. [3] suggested an efficient

technique to reduce the ballistocardiogram by firmly bandaging the

electrodes and wires to the subject. Average artifact subtraction

(AAS) is one of the first algorithms which has been proposed for

cancelation of the BCG artifact [3]. In this method a template is

built up for the artifact by averaging over the artifact trials. The

ballistocardiogram can be removed from EEG signal by subsequent

template subtraction from each trial. One of the major drawbacks

of this widely used method is incompatibility with artifact changes

over the time. Since the shape of BCG artifact is affected by both

variation of heart beat and movements of subject, the assumption of

occurring similar artifact in all trials is not always valid. Moreover,

in all the methods based on averaging, the reference ECG channel

is needed. Niazy et al. [4] developed an algorithm using princi-

pal component analysis (PCA) known as optimal basis set (OBS).

In their method, first a mixture of artifact trials is formed for each

channel, then, the principal components of this mixture are calcu-

lated. In the third step, few of the first principal components are

selected as the basis set. In the last step a template is created using

selected basis set and subtracted from each BCG trial. This method

does not lead to good results when there is additional artifacts in

EEG data due to subject movement. In [5], an algorithm using

discrete Hermite transform (DHT) has been proposed for BCG re-

moval. The main objective in this method is modeling the BCG

artifact using discrete Hermite transform. The shape of BCG is

modeled using Gaussian functions which are initial Hermite func-

tions. These Gaussian functions are eigenvectors of a centered or

shifted Fourier matrix. In [5], the Hermite transform of EEG signal

is obtained by computing the inner product between the signal and

the Gaussian functions. This provides a set of transformed values

corresponding to a particular shape within the EEG signal. Then,

the artifact template is built using some of the transformed values

and subtracted from EEG signal. As already implied, AAS and

OBS work only for stationary signals, while DHT is robust against

changes in the shape of signal. The main superiority of DHT lies

in the fact that it analyzes a single trial, containing one BCG ar-

tifact at each stage. This enable us to remove the artifact without

interferences from other trials.

Another class of artifact removal methods is based on blind

source separation (BSS). Independent component analysis (ICA) is

a well known BSS technique and powerful statistical algorithm to

remove the ballistocardiogram in EEG [6]. The blind source separa-

tion approaches are useful when no ECG signal is available for tem-

plate matching. Moreover, they do not consider that the BCG arti-

fact is predictable. Methods using the ICA assume that the recorded
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EEG signals can be represented by a linear mixture of neural activ-

ity inside the brain, and artifacts caused by muscles and noise. On

the other hand, ICA decomposes the EEG signals into a set of inde-

pendent components (ICs). Removing ICs containing BCG artifact

and backprojecting the remaining ICs achieves the clean EEG sig-

nals. In several studies ICA has been used for removing the BCG

artifact [7] [8]. Nakamura et al. [8] evaluated the performance of

different ICA algorithms for removing BCG from EEG data. In a

recent method, Ghaderi et al. [9] proposed a blind source extrac-

tion technique with cyclostationary constraint to extract the BCG

sources.

In this paper we propose a new BCG removal method by com-

bining ICA and DHT to take most advantages of both methods and

overcome their existing drawbacks. The main advantage of the pro-

posed method is robustness against changes in the shape of artifact

over time. The proposed method alleviates the uncertainty in choos-

ing the right number of sources to be deflated in ICA-based meth-

ods. Moreover, an adaptive parameter selection strategy is proposed

which decreases the sensitivity of DHT-based methods to variations

of the model parameters.

The next section briefly describes ICA algorithm. In section 3,

we present mathematical details of discrete Hermite transform. The

proposed method is given in section 4. The simulation results are

presented in section 5. Finally, the paper is concluded in section 6.

2. INDEPENDENT COMPONENT ANALYSIS

ICA models a set of observed data as a linear mixture of statistically

independent variables [10] [11]. The basic ICA can be formulated

as follows:

y(t) = As(t) + n(t) (1)

where s(t) = [s1(t), ..., sm(t)]T is the vector of m source signals

at time t, y(t) = [y1(t), ..., yl(t)]
T is the l × 1 observation vec-

tor, A is an l×m matrix known as mixing matrix and n(t) is l× 1
noise vector. ICA problem can lead to a correct solution if two main

conditions are satisfied. First, the observed data is assumed to be a

linear mixture of independent source signals. Second, the factor-

ized source signals should be statistically independent. In addition

to these conditions, the dimension of observation data l should be

larger than the dimension of source signal m. With these assump-

tions, the independent components (ICs) can be retrieved by deter-

mining an m×l matrix W, namely unmixing matrix. In general, W

can be represented by product of A−1 and scaling and permutation

matrices. After obtaining the unmixing matrix the source signals

are computed by:

ŝ(t) = Wy(t). (2)

In this work we use Infomax to remove the BCG artifact. Infomax

was proposed by Bell et al. [12] and is based on maximizing the

output entropy. Consequently, it maximizes the mutual information

between the observations and the separated signals.

3. DISCRETE HERMITE TRANSFORM

Continuous Hermite transform is a well-known signal processing

method and has found many applications in biomedical signal pro-

cessing [13] [14]. DHT is a version of continuous Hermite trans-

form with capability of applying to digital signals. DHT of a digi-

tal signal is obtained using discrete basis functions, hk, which are

generated as a set of eigenvectors of a centered or shifted Fourier

transform of that signal [15]. The eigenvectors of shifted Fourier

transform, Fc, should satisfy:

Fchk = j
k
hk (3)

where j =
√
−1 and k = 1, . . . , n. As it is mentioned before

h1,h2, . . . ,hn are basis functions for a matrix with dimension n in

discrete Hermite transform. In order to generate the basis functions,

a tridiagonal matrix, T, which has the same eigenvectors as Fc is

used [13]. The eigenvectors of matrix T are orthogonal to each

other, since T is a symmetric n× n matrix. The elements of T can

be computed using the following equations [13].

• The k-th element on the main diagonal is computed by:

T(k, k) = −2 cos( π

σ2
) sin(

πk

nσ2
) sin(

π

nσ2
((n− 1)− k))

(4)

where 1 ≤ k ≤ n

• And k-th off-diagonal element is computed by:

T(k, k − 1) = T(k − 1, k) = sin(
πk

nσ2
) sin(

π

nσ2
(n− k))

(5)

where 2 ≤ k ≤ n− 1

• The remaining elements of T are set to zero.

Parameter σ ≥ 1 in the above equations, known as dilation pa-

rameter, controls the width of the digital basis functions [5]. Choos-

ing the value of the dilation parameter is an important issue. A

proper value for this parameter allows the Hermite transform to

model the signal with a minimum number of terms. The Hermite

transform of a digital signal, x of size 1×n, can be computed by the

inner product between the input signal and the basis functions. The

result of this product is a set of transform values which is shown as:

Ck =< x,hk > k = 1, . . . , n (6)

In fact, the coefficients of Ck represent the shape contents of

the signal. Therefore, the result of applying this transform to x (the

segments of ICs containing BCG artifact) implies that the BCG can

be modeled by a number (e.g. p) of elements of Ck. This can be

achieved by inverse discrete Hermite transform:

x̂ =

p
∑

k=1

Ckhk. (7)

4. PROPOSED METHOD

In this section, we propose an ICA-based method, followed by an

adaptive DHT, to remove BCG artifact from EEG signals. We call

this method ICA-DHT. It has been shown that both ICA and DHT

can be used for removing BCG [5] [8] but their performances are

affected by some weaknesses. The most important issue in BCG re-

moval by ICA, is choosing the number of sources that should be de-

flated. The results of applying ICA to EEG signals show that BCG

artifact comprises of three to six independent components, added

linearly to EEG data [7] [8]. Some methods use the correlation be-

tween the estimated independent components (ICs) and the ECG

channel as a criterion to select the BCG components [7]. In another

method [16] only the strongest component, in terms of power, is

labeled as BCG. Selecting and removing only a small number of

sources as BCG may leave some artifacts in the signals. In contrast,

selecting and removing a large number of sources may eliminate

useful information from the EEG signals. We have found DHT as

a suitable complement which can soften this problem. This can be

achieved by applying DHT to those ICA sources labeled as BCG

artifact. In this work, we first detect the existing peaks in BCG

sources using a simple correlation based method. Then, each BCG

source is divided into segments centered at the detected peaks. The

segments are chosen in a way such that we have one peak in each
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Fig. 1: BCG modeling with different values of the dilation parame-

ter.

segment. Then, an adaptive DHT (which will be shortly introduced)

will be applied to each segment in order to model the artifact. Fi-

nally, the obtained model is subtracted from each segment which

gives a clean component with no artifact. All the obtained compo-

nents based on this procedure will be projected back to the electrode

space giving clean EEG signal.

However there are some drawbacks for DHT-based algorithms.

One of the important weaknesses of DHT in BCG removal is its

disability to model the whole artifact with minimum number of ba-

sis functions. In the BCG trial example, shown in Figure 1, the

artifact template is made by 15 basis functions and different dila-

tion parameters. As can be seen, the amplitude and length of re-

constructed template are inversely related. Assuming a fixed num-

ber of terms, increasing the value of σ decreases the amplitude of

basis functions, hk, and consequently decreases the amplitude of

reconstructed model for BCG. Although reconstructed model by a

large value for dilation parameter does not cancel the BCG artifact

in terms of amplitude, it covers the whole BCG trial. In contrast,

decreasing the value of σ increases the amplitude of template but

decrease the length of reconstructed template. As a result it is not

able to remove the whole BCG artifact. Based on these weaknesses,

we need to use large number of coefficients of Ck to reconstruct the

BCG template such that it covers the BCG artifact in terms of am-

plitude and length. Removing BCG with a large number of basis

functions leads to removing EEG data as well.

We observed that the artifact is more localized in BCG sources

than in the raw EEG signals. Moreover, when the artifacts are

grouped into few components, their relative amplitudes will be

larger than artifacts in raw EEG data. We found that these charac-

teristics of BCG source (as a result of applying ICA on the raw EEG

data) make them appropriate inputs for the DHT algorithm and can

compensate for the drawbacks occurred by directly applying DHT

to raw EEG data.

Another drawback of DHT based algorithms is sensitivity of

these methods to selection of a proper value for the dilation param-

eter (σ in (4) and (5)). One way to decrease the sensitivity of the

algorithm is by using an adaptive strategy which is proposed as fol-

lows:

{

σi+1 ← σi cr ≤ thr

σi+1 ← σi − β cr

max(cr)
cr > thr

(8)

where cr is the normalized correlation between the ECG signal and

BCG source after applying the proposed method. i is the current

iteration of the algorithm. β is step size which is manually selected

by user. The initial value of σ is manually selected between 10-15.

The value of this parameter is updated until reaching to a predefined

threshold, thr. Since BCG artifact is appeared as spike in the re-

sults of ICA, an initial large value for dilation parameter is selected.

Selecting the value of σ in this range leads to removing a small

portion of artifact in the first iterations due to obtaining a smooth

template with low amplitude for the artifact. After several iterations

the value of σ is decreased by the proposed iterative algorithm to

obtain an optimal template for appeared spikes.

In what follows we summarize the steps of the proposed method

for BCG removal:

• Step 1: Apply ICA to the EEG data contaminated by BCG

artifact to separate BCG sources;

• Step 2: Select six ICA components which are more corre-

lated with ECG channel;

• Step 3: Apply DHT with the proposed adaptive technique on

each selected BCG source to find a template for the artifact.

Repeat this step until cr ≤ thr;

• Step 4: Subtract the template from each BCG source

and backproject the residuals together with the remaining

sources.

5. RESULTS

In this section, performance of the proposed algorithm for BCG

removal is evaluated. Two data sets comprising synthetic and real

EEG are used. The comparison between the obtained results using

the proposed algorithm and other conventional methods confirms

the effectiveness of the proposed methods to remove BCG artifact.

We have observed that the combination of ICA and DHT can be

more effective than applying any of these methods separately.

5.1. Synthetic Data

A set of five sources including artifacts and EEG rhythms are gen-

erated (Figure 2). In this figure, S1 and S3 are 9Hz and 12Hz sine

waves respectively, S2 represents BCG artifact, S4 is random noise

and S5 is a periodic signal. The sources are mixed by a random 5×5
matrix. Three methods, Infomax, DHT, and the proposed method

are applied to synthetic EEG data set in order to remove the BCG

artifact. In order to evaluate the results, the normalized correlation

between the extracted sources and the actual EEG sources is com-

puted. This value is calculated for two sources S1 and S3 as these

sources are considered as EEG rhythms. Table 1 shows the obtained

results when different noise levels are added to the mixtures. The

number of coefficients of Ck used to model the artifact are 15 and 8
for DHT and ICA-DHT respectively. The dilation parameter when

DHT is used to remove the BCG artifact, is selected 3. The obtained

value of this parameter for ICA-DHT, using the proposed adaptive

strategy, is 2.5. Comparing the obtained results in Table 1 shows

that the performance of Infomax and DHT decreases at higher level

of noise, while the proposed method is still able to remove the BCG

artifact in these noise levels. Figure 3 shows a segment of recon-

structed S3 using different methods at SNR=5dB.

5.2. Real Data

The real EEG data set used in this work comprises of 64 EEG chan-

nels with sampling rate of 10KHz from two subjects. In order to

decrease the computational time, we selected 32 of these channels.

Table 1: Normalized correlation between the extracted and actual

simulated EEG sources.

No noise SNR=20dB SNR=10dB SNR=5dB

Infomax
S1 0.926 0.882 0.622 0.574
S3 0.998 0.928 0.723 0.649

DHT
S1 0.934 0.899 0.828 0.634
S3 0.970 0.9387 0.818 0.369

ICA-DHT
S1 0.980 0.935 0.862 0.802
S3 0.998 0.962 0.897 0.872
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All the preprocessing steps used for this data set are: 1) removing

gradient or imaging artifact using the method proposed by Niazy

et al. [4]. 2) Down-sampling data to 250Hz. 3) Bandpass filtering

using a Butterworth filter. The cutoff frequencies for low-cut and

high-cut frequencies are selected as 0.5Hz and 45Hz respectively.

A 5s segment of data from 8 channels after preprocessing is shown

in Figure 4. After preprocessing, Infomax ICA is applied to EEG
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Fig. 5: Extracted BCG sources.
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Fig. 6: (a) The reconstructed template and (b) the residual.

data to separate all the sources. The number of sources are selected

equal to the number of sensors. We used 10-second segments of

EEG for this purpose. After applying ICA, the extracted sources

are clustered based on their correlations with ECG channel. The

clustered BCG artifact sources for a sample segment are shown in

Figure 5. As can be seen there are some spikes in these sources

which are due to BCG artifact. Hence, DHT is used here for mod-

eling and removing these spikes from the selected sources. For this

purpose, these sources are segmented such that the spikes fall in

the center of each segment. In order to have one artifact per each

segment, with no overlap, the length of each segment is selected to

be 256. This is due to the fact that the period of BCG artifact is

approximately one second, and the sampling rate of data is 250Hz.

The reconstructed template for BCG artifact for one of the sources

is shown in Figure 6 (a). The residual as a result of subtracting the

BCG source and the template is presented in Figure 6 (b). As can be

seen, the residual contains brain rhythms retrieved by the proposed

method. In this work, 15 coefficients (5% of total coefficients) from

Ck are selected to model the artifact. The reason for selecting such

a small fraction is to avoid losing useful EEG information while re-

moving BCG. The main advantage of the proposed algorithm is its

ability to remove the artifact from the BCG sources containing brain
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rhythms such as the source shown at the bottom of Figure 5. Figure

7 (a) shows the results of artifact removal from one “EEG channel”

using ICA and ICA-DHT which clearly shows the advantage of the

proposed method in removing more portions of artifact without los-

ing any EEG information. The highlighted areas show some peaks

of BCG artifact which have not been removed by ICA. The number

of deflated sources in ICA is five, while we selected six sources to

deflate in ICA-DHT method. Figure 7 (b) shows the BCG source

which is not deflated in ICA.

Figure 8 shows the results of applying different methods for a

segment of EEG signal in CZ channel. The results confirm that the

proposed method removes the BCG artifact more efficiently than

the other methods. Our experiments on BCG removal for real EEG

data set show that the dilation parameter converges to a value around

four. The averaged dilation parameter obtained as a result of apply-

ing the proposed method to 40 segments of EEG signals (each seg-

ment comprises of 32 channel and 10 second signal) was 4.25. The

threshold used for normalized correlation between the ECG channel

and the BCG sources after applying the ICA-DHT was set to 0.001.

6. CONCLUSION

In this paper the problem of BCG removal from EEG data has been

addressed. A new method, called ICA-DHT, has been proposed for

this purpose. The proposed method takes the advantages of both

ICA and DHT for removal of BCG artifact. We also proposed

an adaptive dilation parameter which decreases the sensitivity of

DHT to the selection of this parameter. The experimental results

have been promising and showed the effectiveness of the proposed

method in removing the BCG artifacts.
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