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ABSTRACT

A wireless acoustic sensor network is envisaged that relies

on a collection of spatially distributed microphones, which

observe a speech signal together with additive background

noise. The microphone signals are sent to a fusion center

where they are filtered and combined to produce an esti-

mate of the speech signal. In order to save energy and ex-

tend network lifetime, it is desired to only have a subset of

the microphones active at any one moment. This subset se-

lection unfortunately comes with the adverse effect of de-

creasing the accuracy of the signal estimation. Since the net-

work now has two competing objectives a trade-off develops

that balances the energy consumption to estimation accuracy.

We propose a network model that is cast similarly to a 0-1

knapsack problem that uses a greedy method to balance the

output signal-to-noise ratio to total transmission energy ex-

pended by the wireless microphones. Simulations show that

although a greedy approach is used, a relatively small de-

crease in output signal-to-noise ratio is achieved while there

is a marked decrease in energy usage of the system.

Index Terms— wireless sensor networks, acoustic sen-

sor networks, multimedia sensor networks, sensor fusion,

sensor subset selection, greedy algorithms
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1. INTRODUCTION

Resource allocation is a fundamental design challenge in

wireless sensor networks (WSN). This is due, in part, to

devices being spatially distributed throughout an area and

relying on limited resources to perform a certain predefined

task. In order to efficiently allocate network resources, algo-

rithms must be developed that are able to determine which

subset of signals benefit the system goal the most while uti-

lizing the fewest number of resources possible. As the usage

of WSNs for signal estimation has become more prevalent

[1], there has been growing interest on exploring subset

selection in regards to resource allocation [2, 3].

A wireless acoustic sensor network (WASN) is a collec-

tion of microphones that are interconnected through wireless

links [4]. Here, a WASN is envisaged that observes a speech

signal together with background noise, where the task is to

produce an estimate of the speech signal. In a centralized

scenario, the microphone signals are sent to a fusion cen-

ter (FC) where they are used to derive an optimal filter in

the linear minimum mean square error (MMSE) sense which

takes the form of the well known multi-channel Wiener filter

(MWF) [5]. Since the microphones may be distributed over

a large area with limited energy resources it is advantageous

to limit the total amount of active microphones to a subset

in order to extend the lifetime of the network. Unfortunately

limiting the network to a subset of microphones results in a

decrease in the output signal-to-noise ratio (SNRout).

The aim of this paper is to use information derived from

the unique properties of an assumed rank-1 speech model

in the WASN and the individual energy usage of the wire-

less sensors in order to determine a subset of microphones

that offer an acceptable trade-off between the SNRout and to-

tal transmission energy (ET ). While previous methods have

proposed greedy type algorithms based on the total informa-
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tion gain of individual microphones [6, 7], they fail to couple

the energy usage of the network in order to facilitate better

network resource management.

The problem is comparable to a 0-1 knapsack problem

(0-1 KP) that maximizes the overall SNRout while meeting a

predefined energy budget. A similar approach was presented

in [8] that minimized the transmission energy while keeping

the mean square error (MSE) below a certain bound. While

both methods are similar, our problem statement presents

particular challenges as the actual contribution of a micro-

phone depends on the other microphones that are in the cur-

rent subset. Therefore a greedy algorithm is used that re-

moves the signal that has the lowest contribution to the over-

all SNRout compared to its energy usage until the desired en-

ergy consumption of the network is met.

The paper is organized as follows. Section 2 describes the

problem formulation and notation of the envisaged WASN.

Section 3 describes an efficient way to determine the con-

tribution of each signal to the current estimation in terms of

full-bandwidth SNRout. In section 4 a greedy algorithm is

proposed similarly to a 0-1 KP using the WASN parameters.

Simulations are performed in section 5 which show the effect

on SNRout while removing signals to reach the desired sys-

tem energy. Finally in section 6 conclusions are drawn from

the simulation data.

2. DATA MODEL AND NOTATION

We assume a spatially distributed set of microphones that

collect and transmit their observations to an FC. A signal im-

pinges on each microphone k ∈ {1 . . . M} in the form of

yk(ω) = xk(ω) + nk(ω) (1)

where xk is the desired speech component, nk is the un-

desired noise component and ω is the frequency bin. The

frequency bin ω will be omitted from the following deriva-

tions bearing in mind that the operations take place in the

frequency domain.

The FC collects the entire M channel signal in a stacked

vector y = [y1 . . . yM ]T , where T is the transpose opera-

tor. An M channel speech vector, x and noise vector n are

similarly defined. We assume that there is a single speech

source, s, hence the speech component in each microphone

is represented as

x = as (2)

where a is a steering vector that contains information pertain-

ing to the room acoustic transfer functions from the speech

source location to the microphones.

The FC performs an MMSE estimate of the desired

speech component in a reference microphone which, without

loss of generality, is chosen as the first microphone, x1. The

MSE cost function at the fusion center is represented as

J(w) = E{|x1 − wHy|2}

= E{|x1 − wHx|2} + E{|wHn|2} (3)

where E{} is the expectation operator, H is the conjugate

transpose, and it is assumed that the speech and noise com-

ponents are statistically independent. Alternatively a tuning

parameter µ may be added to (3), i.e.,

J(w) = E{|x1 − wHx|2} + µE{|wHn|2} (4)

which controls a trade-off between speech distortion and

noise reduction. If a single speech source is assumed, the

optimal solution in an MMSE sense to (4) is [9],

ŵ =
R−1

nnRxxe1

µ + Tr{R−1
nnRxx}

(5)

where Tr{A} is the trace of the matrix A, e1 is a vector

containing a one in the first entry (corresponding to the ref-

erence microphone) and zero otherwise, R−1
nn is the inverse

of the noise correlation matrix Rnn = E{nnH} and Rxx =
E{xxH} is the speech correlation matrix. For the ease of

exposition we will represent Tr{R−1
nnRxx} as Tr{D} unless

otherwise stated.

Since the speech and noise are assumed to be uncorre-

lated Rxx may be estimated by subtracting a noise+speech

correlation matrix Ryy, estimated during speech activity, by

the noise correlation matrix Rnn, estimated during speech

pauses1, i.e.,

Rxx = Ryy − Rnn. (6)

3. SIGNAL REMOVAL AND THE EFFECT ON

OUTPUT SNR

The SNRout at the FC evaluated at a given frequency bin, ω,

is given by the ratio of the variance of the filtered signal to

the variance of filtered noise

SNRout =
E{|ŵHx|2}

E{|ŵHn|2}

=
ŵHRxxŵ

ŵHRnnŵ
. (7)

Using the rank-1 speech model it has been shown in [9] that

SNRout may also be represented as Tr{ R−1
nnRxx} or

SNRout = Tr{ R−1
nnRxx}

= Tr{ R−1
nnPsaa

H}

= Psa
HR−1

nna (8)

1It should be noted that there are better ways to estimate the Rxx, such

as using the dominate eigenvector, the described method is only used for its

simplicity as it is not the main topic of the paper.
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where Ps is the power of the desired speech signal.

The impact that a microphone has on the SNRout, i.e., the

reduction that happens when that signal is removed, is used to

determine the importance of a microphone to the current esti-

mation. The decrease in SNRout when a signal k is removed

from the system can therefore be calculated by monitoring

the change in (8), i.e.,

SNRout−k = Tr{D−k} (9)

where Tr{D−k} is the trace with signal k removed.

In [7] a computationally efficient expression, O(M), was

derived that simultaneously calculates the difference in the

trace at a given ω for all signals in the current estimation,

[Tr{D−1} . . . Tr{D−M}]T = Tr{D}1− Λ−1
NX |ΛD|21

(10)

where ΛD is a diagonal matrix of elements that define the

trace, Λ−1
NX is a matrix product of the diagonal elements of

the inverse noise and speech correlation matrix and 1 is a

vector with all entries equal to one.

Due to spectral differences in the desired speech and

undesired noise components, the signal contributions to the

SNRout may differ greatly throughout the frequency bins

which makes the decision on which signal to remove an ar-

duous task. Therefore we extend (8) to the full-bandwidth

SNRout (FB-SNRout) so that the contribution each signal

makes to the full estimation of the desired speech signal may

be known.

In order to determine the impact of the removal of signal

k on the FB-SNRout, the variance of the filtered speech and

filtered noise must first by summed over all frequency bins

respectively,

FB-SNRout =

L−1∑

ω=0
E{|ŵHx|2}

L−1∑

ω=0
E{|ŵHn|2}

(11)

where L is the DFT size. The variance of the filtered speech

component, E{|ŵHx|2}, in a single frequency bin may be

expanded using (5), i.e.,

ŵHRxxŵ =
eT
1 RxxR

−1
nnRxxR

−1
nnRxxe1

(µ + Tr{ D})2
(12)

which when using the relationship in (8) reduces to

ŵHRxxŵ =
P1Tr{ D}2

(µ + Tr{ D})2
(13)

where P1 = Ps|e
T
1 a|2 denotes the speech signal power in the

reference microphone.

Likewise the filtered noise variance, E{|ŵHn|2} can

also be represented as

ŵHRnnŵ =
eT
1 RxxRnnR

−1
nnRnnRxxe1

(µ + Tr{ D})2

=
P1Tr{ D}

(µ + Tr{ D})2
(14)

which when used with (13) and the definition of SNRout

(7), reduces to (8). If instead we wish to determine the

FB-SNRout it can now efficiently be computed as a sum of

the powers in the reference microphone and trace products

over all frequency bins,

FB-SNRout =

L−1∑

ω=0

P1Tr{ D}2

(µ+Tr{ D})2

L−1∑

ω=0

P1Tr{ D}

(µ+Tr{ D})2

. (15)

Furthermore the FB-SNRout with a signal k removed may

be calculated by using the trace with the signal k removed as

FB-SNRout−k =

L−1∑

ω=0

P1Tr{ D
−k}

2

(µ+Tr{ D
−k})2

L−1∑

ω=0

P1Tr{ D
−k}

(µ+Tr{ D
−k})2

. (16)

The difference between the current FB-SNRout and

FB-SNRout−k may then be given as

∆FB-SNRout−k = FB-SNRout−k − FB-SNRout. (17)

Since Tr{D−k} can be found simultaneously for each signal

left in the estimation, FB-SNRout−k may be found with rel-

atively little increase in computationally complexity. Notice

that once a signal is removed from the estimation, R−1
nn−k

and ŵ−k must be re-calculated to perform optimal filtering

with the remaining signals. It is noted that both values can

also be efficiently computed as shown in [6].

4. GREEDY APPROXIMATION

In order to determine the importance of each microphone to

the estimation while meeting the network resource allocation

constraints, it is necessary to evaluate the amount of infor-

mation gain of the individual microphones compared to their

usage of network resources.

In the envisaged network scheme, the FC maximizes the

FB-SNRout while also restricting the combined transmis-

sion energy of the individual nodes to below a given energy

threshold ET . Microphones that are not used in the estima-

tion are put into sleep mode to reduce the energy usage of

the network. Since microphones either transmit or do not

transmit to the FC, the problem of which subset to select is

an inherent combinatorial optimization problem. This for-

mulation is similar to a 0-1 KP that maximizes the value of a
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set of objects while ensuring that the sum of the weights of

the objects stays below a certain constraint.

The optimal solution to combinatorial optimization prob-

lems may be found by using an exhaustive search that finds

all 2M combinations. In order to reduce the computational

burden associated with an exhaustive search, especially when

the number of microphones is large, we use a sub-optimal

approximation often used in 0-1 KPs, which uses a value per

weight ratio and employs a greedy method to add or remove

elements from the system [10].

In this context, each microphone k is associated with a

value representative of the reduction in FB-SNRout when it is

removed from the estimation, vk = ∆FB-SNRout−k. The FC

places these values in a stacked vector of the form

v = [v1, . . . , vM ]T . (18)

The microphones are also associated to a weight that is repre-

sented by their transmission energy ek to communicate with

the FC. The values in (18) are divided by their transmission

energies to produce a value per energy ratio, i.e.,

vw = [
v1

e1
, . . . ,

vM

eM

]T . (19)

The FC then begins the sensor selection process by removing

the microphone that has the lowest contribution or value per

weight ratio, min{vw}. The greedy algorithm repeats the

process until the combined energy of the remaining sensors

is less than ET .

4.1. Weighted Greedy Approach

In using the proposed greedy method based on (19), sensors

with relatively small energy usage may seem to contribute

quite heavily to the estimation thereby eliminating nodes that

contribute to a higher FB-SNRout which is empirically shown

in section 5. Conversely a greedy method that relies strictly

on (18), maximizing FB-SNRout, may utilize nodes that are

at a substantial distance from the FC and consume a large

amount of energy.

With the purpose of balancing out these two solutions, a

relaxation term θ is introduced to the selection process,

vθ + (1 − θ)vw 0 ≤ θ ≤ 1 (20)

where θ = 0 maximizes FB-SNRout with emphasis on min-

imizing E and θ = 1 will focus on maximizing FB-SNRout

only, which is equivalent to the standard approach. This al-

lows for a more flexible trade-off between SNR performance

and network lifetime.

5. SIMULATIONS

An acoustic scenario was simulated with room dimensions

of (5x5x5) m. Figure 1 depicts the room with a white noise

0 1 2 3 4 5
0

1

2

3

4

5

White Noise Source

Babble Noise Source

Speech Source

Fig. 1. Simulated room environment.

source (♦), a babble noise source (∗), and a speech source

(�) all placed at a height of 1.5 m. Microphones were placed

in a grid pattern 0.5 m away from the walls and every 0.5 m at

a height of 1.5 m throughout the room. The reference micro-

phone (⋆) was at the location (2.5,2.5). The simulation was

carried out using a reflection coefficient of 0.4 (T60 = 0.16

using Sabine’s formula) for all measurements. All process-

ing was done in batch mode on the whole length of the audio

signal with a DFT size of L = 512. A perfect voice activity

detector (VAD) was used so that errors in the estimation in

Rxx and Rnn could be neglected.

We used an ideal transmission scheme given in [11] in

which the transmission rate is constant for every sensor and

delays in the system are ignored. The power required to

transmit from sensor k to the FC is then given as

Pk(rk) = Kr
(α)
k (21)

where K is a constant (K ≈ 10−10J/m−α/bit), α is a power

loss factor (nominally between 2 and 6), and rk is the dis-

tance to the FC. We assume a sensor link capacity, Sk, of

212kbs, which is a typical value for current wireless binaural

hearing aid systems [12]. The transmission energy required

for each sensor ek is then given by

ek(rk, Sk) = KSkr
(α)
k . (22)

The FC was placed at the microphone location (0.5,0.5) in

figure 1 and the euclidean distance from the fusion center to

the other microphones was used for rk.

The greedy algorithm as described in section 4 was

started with a full set of signals and removed the signal that

contributed the least to the estimation as defined by (20).

The decrease in FB-SNRout and transmission energy for each

microphone were converted to a dB scale. The energies were

also scaled by dividing by min{ek}. The algorithm termi-

nated the selection process once half of the signals of the

total network were removed. Figures 2,3 show the network

configuration when half of the nodes have been removed

from the system for the limiting scenarios of θ = 0 and

θ = 1. As expected θ = 0 weights the network topology
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Network with Removal of 40 microphones (θ = 0)

Fig. 2. Network topology with θ = 0.
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Network with Removal of 40 microphones (θ = 1)

Fig. 3. Network topology with θ = 1.

heavily in favor of a nearest neighbor scenario. This may

in fact become a problem if the FC lies somewhere near the

noise source as it would effectively remove all nodes that can

greatly contribute to the FB-SNRout. On the other extreme

θ = 1 the network relies strictly on the FB-SNRout which

contains some nodes that are a large distance from the FC.

Figure 4 shows the decrease in SNRout and total percent-

age of power consumption after each signal removal for vary-

ing values of θ. For θ = 0.1 the network achieves a 12%

reduction in energy consumption while only losing 0.14 dB

in FB-SNRout when compared to θ = 1.

6. CONCLUSIONS

A relaxation term that was related to the energy use was

applied to a greedy subset selection algorithm in order to

balance output signal-to-noise ratio to energy consumption.

A previous method of ranking the signals in terms of their

frequency dependent output SNR was extended to a full-

bandwidth measurement. This in conjunction with the re-

laxation term applied to the output SNR/Energy allowed for

a noticeable reduction in energy consumption of the network

while still maintaining a high level of output SNR.
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