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ABSTRACT

The higher-order tensor analysis of multi-channel signals and sys-
tems has developed to one of the key signal processing areas over
the past few years. In this contribution we present a new algo-
rithm for the Parallel Factor (PARAFAC) analysis of tensors obey-
ing a special kind of symmetry, which we refer to as dual-symmetry.
This iterative algorithm is based on alternating Procrustes estimation
and Khatri-Rao factorization (ProKRaft). The PARAFAC analysis
of dual-symmetric tensors is of high interest for every correlation-
based multi-channel algorithm, such as analytical channel models.
It can also be used for the computation of the Independent Compo-
nent Analysis (ICA), which is one of the most frequently applied
methods in signal processing. Based on Monte-Carlo simulations
we show that the new algorithm outperforms other state-of-the-art
approaches while being very robust with respect to outliers. Further-
more, we evaluate its performance for the computation of the ICA
also in comparison to other ICA algorithms.

Index Terms— canonical polyadic decomposition, tensor, dual-
symmetric, pair-wise symmetric, Procrustes, ICA, PARAFAC

1. INTRODUCTION

In multi-dimensional signal processing, one of the methods which
has gained significant interest over the last few years is the Parallel
Factor (PARAFAC) analysis, also known under the terms Canonical
Decomposition (CANDECOMP) or Canonical Polyadic Decompo-
sition (CPD) [3]. The PARAFAC analysis has its origins as explo-
rative data analysis tool in the field of psychometrics [6] in 1970.
Since then it has been used in various other fields, such as chan-
nel modeling for communication systems, Blind Source Separation
(BSS), pattern recognition, and many more. The success of the
PARAFAC model is primarily due to its unique identifiability prop-
erties [8].

In this contribution we focus on a subset of R-way tensors
(higher order arrays) obeying a special kind of symmetry which
we refer to as dual-symmetry (cf. Definition 2.1). Dual-symmetric
tensors appear in many applications of signal processing, e.g., each
correlation tensor, which represents the higher-order equivalent of a
correlation matrix, has this kind of symmetry [14]. Therefore, the
PARAFAC analysis of dual-symmetric tensors can be seen as the
higher-order generalization of the Principle Component Analysis
(PCA). Another fact which shows the high practical relevance of
the dual-symmetric PARAFAC problem is that every pair-wise sym-
metric tensor [9], such as the higher-order cumulant tensor, is also

dual-symmetric. A cumulant tensor of order R collects all possible
cumulants of order R for a multi-channel signal, and plays a key
role for the computation of the Independent Component Analysis
(ICA) [2].

In this work we define the dual-symmetry property for higher-
order tensors and develop a new iterative dual-symmetric PARAFAC
algorithm which is based on alternating Procrustes estimation [13]
and Khatri-Rao factorizations (ProKRaft). We investigate the perfor-
mance of this new algorithm by means of Monte-Carlo simulations
and thereby show that it outperforms state-of-the-art PARAFAC al-
gorithms such as Closed-Form PARAFAC (CFP) [11] or Alternating
Least Squares approaches (ALS) including enhanced line search [1].
Furthermore, we use the new ProKRaft algorithm for calculating the
ICA and compare the resulting performance against the most famous
ICA approaches JADE [2] and FastICA [7].

2. BASIC DEFINITIONS AND PROBLEM FORMULATION
2.1. Notation

In order to highlight the distinction between mathematical quantities
of different order, we define the following notation: scalar variables
are denoted by italic letters (a, b, i, I, . . .), column vectors by bold-
face lower-case letters (a, b, . . .), matrices by boldface upper-case
letters (A,B, ...), and tensors (higher order arrays) are denoted as
upper-case, boldface, and calligraphic letters (A,B, . . .). This nota-
tion is consistently used for the lower-order parts of a given quantity.
Therefore, X ∈ C

I1×I2×···×IN represents a tensor of order N (an
N -way higher order array) with the size In along mode n. The scalar
elements of X are referenced by (X )

i1,i2,...,iN
= xi1,i2,...,iN with

in = 1, 2, . . . , In and n = 1, 2, . . . , N . Furthermore, the i-th col-
umn vector of a matrixA is denoted as ai. For matrices we use the
superscripts ·T, ·∗, and ·H, for transposition, complex conjugation,
and Hermitian transposition, respectively. The Kronecker product
and the Khatri-Rao product (which is the column-wise Kronecker
product) between two matricesA andB is expressed byA⊗B and
A �B, respectively.

2.2. Tensor Operations

The tensor operations we use are mostly consistent with [9]. They
are repeated very briefly in the following. The higher-order
norm of a tensor X is symbolized by ‖X‖H and defined as the
Euclidian-norm of vec{X}. Here, the operator vec{X } aligns
all elements of X into a column vector. The n-mode vectors of
a tensor are obtained by varying the n-th index in of the tensor
elements xi1,i2,...,iN within its range (1, 2, . . . , In) while keep-
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Algorithm 1 The ProKRaft algorithm for the PARAFAC decompo-
sition of dual-symmetric tensors
Require: Tensor X and the assumed model order R
Ensure: X is dual-symmetric according to Definition 2.1

• Permute dimensions of X such that (4) holds
• Construct the unfoldingXH using equation (6)
• Obtain U [R] andΣ from the SVD ofXH

• Initialize: Ŵ = IR

• repeat
1. Determine the PARAFAC estimates Â(1), . . . , Â(ND)

from the least-squares Khatri-Rao factorization (cf.
Section 3.2) of U [R] ·Σ · ŴH

2. Obtain UP and VP from the SVD of(
Â(ND) � Â(ND−1) · · · � Â(1)

)H

·U [R] ·Σ

3. Ŵ = UP · V H
P

until the reconstruction error (22) does not change

• Return Â(1), Â(2), . . . , Â(ND)

ing all other indices fixed. The n-mode matrix unfolding of a
tensor X , expressed as [X ](n) ∈ C

In×I1·...·In−1·In+1·...·IN , is
a matrix containing all n-mode vectors of X . In contrast to [9],
the ordering of the n-mode vectors is chosen such that the in-
dices i1, . . . , in−1, in+1, . . . , iN change in ascending order. The
n-mode product of a tensor X ∈ C

I1×···×IN and a matrix
A ∈ C

Jn×In is denoted by X ×n A. It is obtained by multi-
plying all n-mode vectors ofX from the left hand side by the matrix
A. The outer product of a tensor X ∈ C

I1×···×IN of order N
and a tensor Y ∈ C

J1×···×JK of order K is expressed as X ◦ Y .
The result is a tensor of order N + K whose elements are given
by (X ◦ Y)i1,...,iN ,j1,...,jK = xi1,...,iN · yj1,...,jK . A tensor
X ∈ C

I1,...,IN of order N has the tensor rank one if and only if
X is given by the outer product between N vectors c(n) ∈ C

In ,
and therefore X = c(1) ◦ . . . ◦ c(N). The order-N identity tensor
IN,R is defined as

IN,R =
R∑

n=1

er,R ◦ . . . ◦ er,R ∈ R
R×···×R

, (1)

where er,R is the r-th column of a R × R identity matrix IR, also
termed the r-th pinning vector of size R.

2.3. PARAFAC for Dual-Symmetric Tensors

The Parallel Factor (PARAFAC) analysis [6] aims at decomposing a
given tensor X ∈ C

I1×···×IN of order N into a minimum number
of rank-one tensors X (r) with r = 1, . . . , R such that

X =
R∑

r=1

X
(r) =

R∑
r=1

a
(1)
r ◦ a(2)

r · · · ◦ a(N)
r , (2)

where R is the tensor-rank of X . For noisy scenarios, where X =
X 0 +E with a noise free rank-R tensorX 0 and a noise tensor E ,R
is the assumed model order of the PARAFACmodel (2). By defining
the loading matrices A(n) =

[
a
(n)
1 , . . . ,a

(n)
R

]
∈ C

In×R with n =

1, 2, . . . N , and by using the definition of the identity tensor (1) we
can rewrite the PARAFAC model (2) into the form [11]

X = IN,R ×1 A
(1) ×2 A

(2) · · · ×N A
(N)

. (3)

In this contribution we focus on a special class of tensors X which
obey a symmetry we refer to as dual-symmetry. We define this sym-
metry in the following way.

Definition 2.1. A tensor X ∈ C
I1×···×I2ND of even order 2ND is

dual-symmetric if and only if there exists a permutation of indices P
such that the permuted tensorXP obeys a PARAFAC decomposition
which reads as:

XP = I2ND,R ×1 A
(1) · · · ×ND

A
(ND)

×ND+1 A
(1)∗ · · · ×2ND

A
(ND)∗

(4)

Please note that for tensors obeying (4), the size In along dimen-
sion n equals the size of the tensor along dimension ND + n, i.e.,
In = IND+n for all n = 1, 2, . . . ND. Many dual-symmetric tensors
have found application in signal processing, e.g., every correlation
tensor [14] obeys this symmetry. In Section 3 we present a new al-
gorithm, based on alternating Procrustes estimation [13] and Khatri-
Rao factorization (ProKRaft), which is able to exploit the special
structure of the dual-symmetric PARAFAC problem (4). Further-
more, real-valued pair-wise symmetric tensors [9] are a special case
of dual-symmetric tensors. A real-valued tensor is called pair-wise
symmetric if it is invariant under arbitrary index permutations (this
is also referred to as super-symmetry). These tensors play a key role
in cumulant-based algorithms for calculating the Independent Com-
ponent Analysis (ICA) [2]. The application of the new ProKRraft to
the ICA will be discussed in Section 5.

3. SOLVING THE PARAFAC PROBLEM FOR
DUAL-SYMMETRIC TENSORS

3.1. The new algorithm using alternating Procrustes estimation
and Khatri-Rao factorization (ProKRaft)

The algorithm presented here is based on a special unfolding for
dual-symmetric tensors obeying a PARAFAC decomposition as in
equation (4). Apart from the ordering of the tensor elements this
unfolding is equal to the Hermitian unfolding defined in [5]. For a
dual-symmetric tensorX ∈ C

I1×···×I2ND obeying (4) of even order
2ND and K = I1 · I2 · · · IND

this unfolding can be constructed by
reshaping the vector vec{X}

vec{X} =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1,1,...,1

x2,1,...,1

...
xI1,1,...,1

x1,2,...,1

...
xI1,I2,...,I2ND

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xB
1

xB
2

...

xB
K

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

to a Hermitian-symmetric matrixXH of sizeK ×K

XH =
[
x

B
1 ,x

B
2 , . . . ,x

B
K

]
. (6)

Here, each column block xB
k is of sizeK× 1 with k = 1, 2, . . . ,K.

The unfoldingXH can be expressed in terms of the PARAFAC load-
ing matricesA(n) (4) by utilizing the Khatri-Rao product

XH =
(
A

(ND) � · · · �A(1)
)
·
(
A

(ND) � · · · �A(1)
)H

. (7)

Given the Hermitian-symmetric unfoldingXH of the dual-symmetric
tensor X we can define the ”square-root factor” matrix X

1
2

H ∈
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C
K×R such that

XH = X
1
2

H ·

(
X

1
2

H

)H

, (8)

where R is the PARAFAC model order of X . Please note that it
is sufficient to consider a ”square-root factor” matrix X

1
2

H of size
K×R, since from equation (7) it follows that the unfoldingXH has
rank R. For this reason every possible matrixX

1
2

H has the structure:

X
1
2

H = U
[R] ·Σ ·WH

, (9)

with U [R] ∈ C
K×R, Σ ∈ C

R×R, andW ∈ C
R×R, respectively.

Thereby, the matricesU [R] andΣ are determined from the Singular
Value Decomposition (SVD)

XH = U · S · V H
, (10)

such that the matrixU [R] contains the firstR left-sided singular vec-
tors ofXH (i.e., the firstR columns ofU ) andΣ is a diagonal matrix
where the diagonal elements are given by the square-roots of the R
dominant singular values of XH (i.e. the square-root of the first R
diagonal elements in S). The matrixW is a unitary rotation factor
which can be determined by comparing equation (7) and (8) yielding

X
1
2

H = U
[R] ·Σ ·WH =

(
A

(ND) �A(ND−1) · · · �A(1)
)
. (11)

Based on this equation we can determine the unitary rotation fac-
tor W and therewith the loading matrices A(n) by the following
two alternating least squares (ALS) estimation steps. Under the as-
sumption that W has been estimated, we can determine all load-
ing matricesA(n) directly from equation (11) by aND-dimensional
least-squares Khatri-Rao factorization (cf. Section 3.2).

Under the assumption that the loading matrix estimates Â(n) are
known, we recognize that the least-squares estimate of the unitary
rotation factor W from equation (11) is given by the solution of
an orthogonal Procrustes problem [13]. The orthogonal Procrustes
problem aims at finding a unitary transformation matrixW , which
transforms a given matrixF into a given matrixG, i.e.,F ·W = G,
such that the Frobenius-norm of the residual matrix E = F ·W −
G is minimized. Following [13] this problem can be solved very
efficiently by computing the SVD of GH · F = UP · SP · V H

P and
estimating the transformation matrix byW = UP · V H

P . Applying
this solution to equation (11) we compute the SVD of the matrix
(
Â

(ND) � Â(ND−1) · · · � Â(1)
)H

·U [R] ·Σ = UP · SP · V H
P ,

yielding the least squares estimate forW by

Ŵ = UP · V H
P . (12)

By alternating the estimates from equations (11) and (12) we can
solve the PARAFAC problem for dual-symmetric tensors. Please
note that in contrast to many other PARAFAC algorithms, the here
presented method has an identifiability limit (highest possible model
order) of R = K = I1 · I2 · · · IND

, and therefore also works for the
under-determined case where R > max{I1, . . . , IND

}. All compu-
tation steps are summarized in Algorithm 1.

3.2. Least Squares Khatri-Rao factorization

In the following we address the problem of separating the Khatri-
Rao product of ND loading matrices A(n) with n = 1, 2, . . . , ND

of size In ×R such that

Y ≈ A
(1) �A(2) · · · �A(ND)

, (13)

Algorithm 2 Computing the least squares ND-dimensional Khatri-
Rao factorization
Require: Matrix Y and dimensions I1, I2, . . . , IND

Ensure: Number of rows in Y equals I1 · I2 · . . . · IND

• Extract R from the number of columns in Y
• for r = 1, 2, . . . R

1. Extract r-th column yr of Y
2. Construct the tensor Yr by inverting the 1-mode un-
folding from equation (16)

3. Calculate the HOSVD of the tensor Yr = Sr ×1

U
(1)
r ×2 U

(2)
r ×3 · · · ×ND

U
(ND)
r [9]

4. for n = 1, 2, . . . , ND

a
(n)
r = ND

√
(Sr)1,1,...,1 · u

(ND−n+1)
r,1

end
end

• Return allA(n) =
[
a
(n)
1 ,a

(n)
2 , . . . ,a

(n)
R

]

whereY is of size I1 ·I2 ·. . .·IND
×R. Since the Khatri-Rao product

is equal to the column-wise Kronecker product, each column of the
matrix Y = [y1, . . . ,yR] is given by

yr ≈ a
(1)
r ⊗ a

(2)
r · · · ⊗ a

(ND)
r , (14)

where a(n)
r ∈ C

In is the r-th column of the loading matrix A(n).
Given the sizes In of the vectors a(n)

r we can divide the column-
vector yr into a set of column blocks yB

r,q ∈ R
IND

yr =

⎡
⎢⎢⎢⎣

yr,1
yr,2
...

yr,I1·...·IND

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

yB
r,1

yB
r,2

...
yB
r,Q

⎤
⎥⎥⎥⎦ , (15)

with Q = I1 · I2 · . . . · IND−1. In the sequel we rearrange the
column blocks yB

r,q into the 1-mode unfolding matrix of a tensor
Yr ∈ C

IND
×IND−1×···×I1

[Yr](1) =
[
y
B
r,1,y

B
r,2, . . . ,y

B
r,Q

]
∈ C

IND
×Q

, (16)

that due to equation (14) reads as

Yr ≈ a
(ND)
r ◦ a(ND−1)

r ◦ · · · ◦ a(1)
r . (17)

From this equation we can conclude that it is possible to identify the
vectors a(n)

r and thereby the loading matrices A(n) by performing
a best (joint least squares) rank-one approximation of the tensor Yr

using algorithms such as in [10]. Please note that for ND = 2 this
is possible by computing a SVD of Yr ∈ C

I2×I1 [12]. In case of
time-critical scenarios, we propose to estimate the columns of the
loading matrices a(n)

r separately in a least squares sense by using a
truncated Higher Order Singular Value Decomposition (HOSVD) as
defined in [9]

Yr = Sr ×1 U
(1)
r ×2 U

(2)
r ×3 · · · ×ND

U
(ND)
r . (18)

Here, Sr ∈ C
IND

×IND−1×···×I1 is the HOSVD core tensor [9] and
the columns of the loading matricesA(n) can be estimated by

a
(n)
r ≈ ND

√
(Sr)1,1,...,1 · u

(ND−n+1)
r,1 , (19)
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Fig. 1. The CCDF of the reconstruction er-
ror (22) for dual-symmetric tensors X ∈
R

10×12×10×12 . The CCDF is estimated over
10000 realizations using a model order of
R = 8 and a SNR of 30 dB.
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Fig. 2. The CCDF of the reconstruction error
(22) for real-valued pair-wise symmetric ten-
sorsX ∈ R

10×10×10×10 . The CCDF is esti-
mated over 10000 realizations using a model
order of R = 8 and a SNR of 30 dB.
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Fig. 3. The CCDF of the sum of square es-
timation error for the estimated ICA mixing
matrix A. The CCDF was is estimated over
10000 realizations for 10 real-valued source
signalsx(t) as well as 10 sensor signals y(t).

where u(ND−n+1)
r,1 is the first higher order singular vector along di-

mension ND − n+ 1 (i.e., the first column vector of U (ND−n+1)
r ).

The estimation according to equation (19) resolves the inherent scal-
ing ambiguity in (14) by assigning the same Euclidian-norm to each
factor column a(n)

r . Please note that in case of known connections
between the loading matricesA(n), (e.g., because of additional sym-
metries in (4)) this should be taken into account accordingly. The
Algorithm 2 summarizes the necessary steps for inverting the ND-
dimensional Khatri-Rao product (13).

4. PERFORMANCE ASSESSMENTBASED ON
SIMULATIONS

For the validation and the performance assessment of the new
ProKRaft algorithm for the PARAFAC analysis of dual-symmetric
tensors, we create different real-valued dual-symmetric tensors X 0

of order 2ND by randomly choosing the loading matricesA(n) from
a zero-mean, unit variance, Gaussian distribution. Using the same
technique, we create a noise tensor E such that the noise-affected
tensor X is given by

X = X 0 + E. (20)
Since the estimation error in all applications of dual-symmetric ten-
sors, e.g., in ICA and correlation tensor based applications, is also
dual-symmetric, the tensor E obeys the same symmetry as X 0. The
Signal to Noise Ratio (SNR) in decibel (dB) of the tensor X is de-
fined in terms of the higher order norm of X 0 and E by

SNR = 10 · log10
‖X 0‖

2
H

‖E‖2H
. (21)

For the performance assessment we use the relative reconstruction
error Erec defined as

Erec =
‖X 0 − I2ND,R ×1 Â

(1) ×1 · · · ×N Â(2ND)‖H
‖X 0‖H

, (22)

where the loading matrices Â(n) are estimated from the noisy tensor
X . In order to compare our algorithm with other state-of-art meth-
ods, we also show the performance of the alternating least squares
(ALS) PARAFAC algorithm from the N -way toolbox 3.10 [1] as
well as the multi-way closed form PARAFAC algorithm presented in
[11]. Please note that the closed-form PARAFAC (CFP) algorithm
has been adapted to the special case of dual-symmetric tensors in or-
der to reach its best performance. This includes the usage of the joint

diagonalization by Jacobi transformations (JDJT) algorithm [4] for
computing the results of the simultaneous matrix diagonalizations
and the usage of the best-matching heuristic [11].

In the following, we investigate the results for dual-symmetric
tensors X of order 4 and size 10 × 12 × 10 × 12. The model or-
der of the tensors is varied from R = 2, 3, . . . , 9 and the SNR is
set to 30 dB. A representative scenario for the model order R = 8
is depicted in Figure 1. Here, we show the Complementary Cu-
mulative Distribution Function (CCDF) of the reconstruction error
(22) on a double-logarithmic scale in order to visualize the perfor-
mance of the algorithms also with subject to rare outliers. Clearly,
the new ProKRaft algorithm for dual-symmetric tensors from Sec-
tion 3 outperforms the other PARAFAC approaches. Furthermore,
we can see that the performance of the PARAFACN -way algorithm
typically suffers from outliers, and is therefore not stable. In order
to judge the performance also for other model orders R we compare
the algorithms on the 99-percentile (also highlighted by the dashed
horizontal line in Figure 1 and 2) of the reconstruction error in Fig-
ure 4. Thereby, the 99-percentile is the value of the reconstruction
error E99%

rec for that the probability of Erec ≤ E99%
rec equals 99%.

As we can see, all algorithms show the same performance for small
model orders R = 1, . . . , 5 however for medium to large model or-
dersR = 6, . . . , 9 the ProKRaft algorithm increasingly outperforms
the other approaches. A similar behavior was also observed for a
SNR of 50 dB and 70 dB. Also with respect to the computational
time the ProKRaft algorithm outperforms the other approaches for
high model orders. The median of the computation-time per run
for R = 8 is 37.9 ms, 57.6 ms, and 82.2 ms for the ProKRaft
algorithm, the PARAFAC N -way algorithm, and the closed-form
PARAFAC algorithm, respectively.

Since the PARAFAC decomposition of real-valued pair-wise
symmetric tensors is of high interest for the ICA (cf. Section
5) we also investigate the performance of the latter algorithms
for a real-valued pair-wise symmetric tensor of order 4 and size
10 × 10 × 10 × 10. In analogy to the simulation setup for dual-
symmetric tensors, Figure 2 shows the CCDF of the reconstruction
error with the model order R = 8 and Figure 5 depicts the perfor-
mance of all algorithms at the 99-percentile of the reconstruction
error for R = 2, . . . 9. Again, especially for medium to high model
orders R = 5, . . . , 9 the ProKRaft algorithm outperforms the other
approaches. In fact, we can conclude that the performance of the
ProKRaft algorithm is almost independent of the model order.
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Fig. 4. Comparison between the different algorithms over varying
model ordersR for dual-symmetric 4-th order tensors with size 10×
12× 10× 12 at the 99-percentile of Erec.
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Fig. 5. Comparison between the different algorithms over varying
model orders R for real-valued pair-wise symmetric 4-th order ten-
sor with size 10 along each dimension at the 99-percentile of Erec.

5. APPLICATION TO INDEPENDENT COMPONENT
ANALYSIS (ICA)

To demonstrate the practical relevance of the ProKRaft algorithm
from Section 3 we compute the ICA from theM -channel real-valued
sensor signals

y(t) = [y1(t), . . . , yM (t)]T = A · x(t), (23)

where A ∈ R
M×R is the mixing matrix and x ∈ R

R is the vector
of R source signals xr(t). From the sensor signals ym(t) we can
estimate the 4-th order cumulant tensor [2]

(C)i1,i2,i3,i4 = cum (yi1 , yi2 , yi3 , yi4) (24)

of sizeM ×M ×M ×M . By assuming unit variance statistically
independent source signals xr(t) the tensor C obeys the following
PARAFAC decomposition

C = I4,R ×1 A×2 A×3 A×4 A, (25)

such that the ICA mixing matrix A can be identified by using the
ProKRaft method from Section 3. In order to show the performance
of this approach, we compare it with the JADE (Joint Approximate
Diagonalization of Eigenmatrices) ICA algorithm [2], as well as the
kurtosis-based FastICA algorithm [7]. To this end we randomly
draw independent uniformly distributed source signals x(t) as well
as normal distributed mixing matrices A to carry out Monte-Carlo
simulations. In Figure 3 we show the CCDF of the relative sum of
square error between the exact mixing matrices A and its estimated
versions from the JADE, the FastICA, and the ProKRaft algorithm
for M = R = 10. Thereby, the inherent scaling and permuta-
tion ambiguities for the estimated mixing matrices are resolved au-
tomatically. Please note that for this simulation the mixing matrixA
was estimated based on the cumulant tensor of the pre-whitened sen-
sor signals y(t). The ProKRaft algorithm outperforms the FastICA
approach, while performing equal to the JADE method. However,
in contrast to JADE and FastICA it is possible to identify A from
equation (25) also in the under-determined case (R > M ) using the
ProKRaft algorithm.

6. CONCLUSION

In this contribution we presented the new ProKRaft PARAFAC al-
gorithm for the special class of dual-symmetric tensors. We have
shown that this algorithm performs better than current state-of-the-
art approaches especially in cases where the model order is high
compared to the size of the tensor. For low model orders it per-
forms equal to other approaches. It has to be highlighted that the
performance of the ProKRaft algorithm is nearly independent of the
model order. Furthermore, we have shown by Monte-Carlo simula-
tions that the algorithm is robust with respect to outliers. We have
also demonstrated that it has a superior performance for real-valued
pair-wise symmetric tensors and used this fact to create a flexible
ICA algorithm with the same performance as JADE. Additionally,
the algorithm is very general in the sense that it can be used also for
the under-determined case, where the model order exceeds the size
of the tensor along all dimensions.
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