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ABSTRACT

The analysis sparsity model is a recently introduced alterna-
tive to the standard synthesis sparsity model frequently used
in signal processing. However, the exact conditions when
analysis-based recovery is better than synthesis recovery are
still not known. This paper constitutes an initial investiga-
tion into determining when one model is better than the other,
under similar conditions. We perform separate analysis and
synthesis recovery on a large number of randomly generated
signals that are simultaneously sparse in both models and we
compare the average reconstruction errors with both recovery
methods. The results show that analysis-based recovery is the
better option for a large number of signals, but it is less robust
with signals that are only approximately sparse or when fewer
measurements are available.

Index Terms— Analysis sparsity, synthesis sparsity,
comparison, sparse reconstruction, signal recovery

1. INTRODUCTION

In recent years, the study of sparsity and its benefits has been
an active research field in signal processing. The de facto
sparsity model used in literature is a generative model defined
as

x = DγS , with ‖γS‖0 = k. (1)

It requites that the signal x ∈ Rd be expressed as a weighted
sum of at most k of the N atoms from a dictionary D ∈
Rd×N . The signal x is said to be k-sparse.

More recently, a new sparsity model known as analysis
sparsity was introduced [1], describing instead what the sig-
nal is orthogonal to:

γA = Ωx, with ‖γA‖0 = N − l (2)
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with Ω ∈ RN×d being an analysis operator such that x is
orthogonal to at least l of its rows. Following [2], we call the
quantity l the cosparsity of x, and x is said to be l-cosparse.

Both the synthesis and the analysis sparsity models can
be used as regularizing terms in various ill-posed problems.
A widely studied problem of this kind is that of recovering a
signal that is acquired only through a set ofm linear measure-
ments arranged as the rows of a matrix M ∈ Rm×d, contam-
inated with noise z of energy ε = ‖z‖22:

y = Mx+ z. (3)

It has long been established [3] that a sufficiently synthesis-
sparse signal x can be recovered as long as the projections
are incoherent with the sparsity dictionary by solving the NP-
complete optimization problem

x̂ = D arg min
γS
‖γS‖0 with ‖y −MDγS‖22 < ε. (4)

Recovering a signal with (4) is known as the compressed sens-
ing problem [4], and it has been applied in a variety of appli-
cations in the recent years (e.g. [5, 6]).

Similarly to (4), it has recently been proved [2] that a suf-
ficiently analysis cosparse signal x can also be recovered by
solving

x̂ = arg min
x
‖Ωx‖0 with ‖y −Mx‖22 < ε. (5)

The optimization problem (5) is believed to be as difficult as
(4) [7]. The use of `0 norm in (4) and (5) leads to instability
in the presence of noise, or with signals which are only ap-
proximately sparse. Increased robustness can be achieved by
relaxing the `0 norm to `p, 0 < p ≤ 1, at the expense of an
increased number of measurements. A popular choice is the
`1 norm [8, 9], which has the added benefit of turning (4) and
(5) into convex optimization problems.

Although some key similarities and differences between
the two sparsity models and their associated recovery prob-
lems are known, it is still unclear under what conditions one
performs better than the other. In this paper we conduct an
experimental investigation into the practical task of deciding
which sparsity model and recovery problem is better suited in
a given scenario.
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The rest of the paper is organized as follows. In section 2
we present the analysis model in more detail and we rewrite
it into a more convenient form, revealing the similarity with
the synthesis model as well as the key differences. Section
3 introduces signals that are jointly sparse and cosparse (i.e.
bisparse), establishing the conditions for their existence. In
section 4 we present the results of the comparison of synthesis
and analysis recovery for a large number of bisparse signals .
Final comments and concluding remarks are in section 5.

2. ANALYSIS AS LEAST-SQUARES SYNTHESIS
SPARSITY

The relation between the synthesis and the analysis sparsity
models has previously been analysed in detail in [1, 2]. In
[1] it is proved than the synthesis and analysis models (1)
and (2) and their associated recovery problems (4) and (5)
are equivalent whenever the dictionary D is a basis, if Ω =
D† and l = d − k, where D† designates the pseudoinverse
of D. The solutions of the synthesis and analysis recovery
diverge, however, as D becomes an overcomplete dictionary.
This is caused by the geometry of the sets of synthesis- and
analysis-sparse signals being different for the overcomplete
case, with the differences increasing as the overcompleteness
factor increase [2].

The operator Ω is usually assumed to be in general po-
sition [2], i.e. any set of up to d rows is linear independent,
which is an assumption that we follow in this paper as well.
In this case l ≤ d − 1 since a non-zero d-dimensional signal
can be orthogonal to at most d−1 linear independent signals.

Following our recent work [10], we reformulate the analy-
sis sparsity model (2) into an equivalent augmented synthesis
model. One observes that γA in (2) is the least-squares solu-
tion of (1) if D = Ω†:

x = Ω†γA = DγA (6)

which can be written in the form[
x
0

]
=

[
D
PD

]
γA. (7)

where PD is any basis for the nullspace of D. The extra or-
thogonality constraint ensures that γA is the least-squares so-
lution of x in D. Here D is the pseudoinverse of the analysis
operator Ω, and it is regarded as an overcomplete dictionary.
As the upper part of (7) is similar to the synthesis model (1),
(6) can be considered an augmented synthesis sparsity model,
with the addition of an extra constraint.

The equation system (7) reveals the analysis sparsity
model to be a least-squares constrained synthesis sparsity
model. In [10] we rigorously prove that for the noiseless
case (ε = 0) the standard analysis recovery problem (5) is
identical to the augmented synthesis problem

x̂ = D arg min
γ
‖γ‖0 with

[
y
0

]
=

[
MD
PD

]
γ (8)

with D = Ω†. The additional orthogonality constraint is
the defining feature of the least-squares solution. It can eas-
ily be enforced with many existing synthesis recovery algo-
rithms, enabling them to also be used for analysis recovery
with (8). In [10] we have shown the practical viability of this
approach through simulations with various synthesis-based
solvers. Throughout the rest of this paper, when referring to
“analysis recovery” we will have this approach in mind.

In this paper we compare synthesis recovery (4) with ε =
0 with the reformulated analysis recovery (8), aiming to estab-
lish when one is better than the other, for a general dictionary
D. One observes that the two problems now have a very sim-
ilar form. The difference is that synthesis recovery (4) seeks
the sparsest decomposition γS of x in D, whereas analysis
recovery (8) requires finding the least-squares decomposition
γA of x in D. As such, analysis recovery (8) benefits from
having available an additional orthogonality constraint, at the
expense of seeking a solution which is less sparse, since the
sparsity of γA is upper bounded by l ≤ d − 1 while no such
restriction exists for γS .

Choosing between synthesis and analysis-based recovery
implies, therefore, evaluating the benefits of having an extra
orthogonality constraint versus higher sparsity of the solution.
In this paper we evaluate this trade-off from a practical point
of view, using numerical simulations to establish when one re-
covery problem is more successful than the other, depending
on the sparsity and cosparsity of a signal. This kind of empiri-
cal numerical experiments have been presented in compressed
sensing literature before [11], providing insight into the the-
ory as well as significant help for practical applications.

A meaningful comparison requires the synthesis dictio-
nary and the analysis operator to be pseudoinverses of each
other, i.e. using the same D in (4) and (8). This also fol-
lows naturally from the equivalence of the two models in the
complete case. In a practical application, however, if differ-
ent dictionary and analysis operator are available, one must
keep in mind that the difference of their inherent quality will
correspondingly make one recovery method preferable.

3. BISPARSE SIGNALS

In this paper we consider signals that are jointly synthesis and
analysis sparse for some random dictionary, and we perform
reconstructions with both synthesis and analysis algorithms,
separately, in order to establish which recovery is better, de-
pending on the sparsity and cosparsity of the signals. We
focus mainly on exact-sparse signals, but we optionally add
small non-sparse random components to the signals to also
investigate robustness against non-exact sparsity.

Let us consider a signal x ∈ Rd and a dictionary D ∈
Rd×N . Denote with γS the sparsest decomposition of x in D,
and with γA the least-squares decomposition of x in D, with
k = ‖γS‖0 (the number of non-zero coefficients in γS) and
l = N − ‖γA‖0 (the number of zero coefficients in γA). We
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refer to such a signal as a (k, l)-bisparse signal, or simply a
bisparse signal, throughout the rest of this paper.

We point out that we are interested in bisparse signals not
for their practical relevance in applications, but as a way to
compare the usefulness of cosparsity against sparsity for the
same signal. We seek to investigate the following question:
given k and l, is it better to recover the signal using synthesis-
based recovery (4) or using analysis-based recovery (5) refor-
mulated as (8)? As k ∈ 1, 2, ...d and l ∈ 0, 1, ...(d− 1), there
are d2 possible pairs (k, l) in all. We test every combination
and determine in which region of the (k, l) space is synthesis
recovery performing better than its analysis counterpart, and
vice-versa.

To generate (k, l)-bisparse signals for some dictionary D,
we must first see when is it possible for such signals to exist.
We rely on Theorem 3.1 that formulates the existence condi-
tions.

Theorem 3.1. Consider an overcomplete dictionary D ∈
Rd×N and denote M = D†D. Given any subsets I, J ⊂
{1, 2, ...N} with card(I) = l and card(J) = k, there exists
a non-zero vector x ∈ Rd having simultaneously a decompo-
sition γS with the non-zero coefficients on locations in J and
a least-squares decomposition vector γA with zero elements
on locations I if and only if the rank of the l×k minor matrix
MIJ obtained by keeping only the rows with indices I and
columns J from M is strictly smaller than k.

Proof. The signal x satisfies both (1) and (2) with Ω = D†.
Replacing x from (2) with (1) yields:

γA = D†D︸ ︷︷ ︸
M

γS , with ‖γA‖0 = N − l and ‖γS‖0 = k. (9)

If there exist γS and γA obeying (9), then, if we keep only the
rows in I and the columns in J from M in (9), we have

0 = MIJγSJ
(10)

where MIJ is a minor matrix obtained by keeping only the
rows with indices I and the column with indices J from M ,
and γSJ

is the restriction of γS to the indices J . Since γSJ
is

nonzero, this means that the k columns of the MIJ are linear
dependent, i.e. rank(MIJ) < k.

Conversely, if an l × k minor matrix MIJ of M has rank
smaller than k, it means that its k columns are linear depen-
dent, and therefore there exists a set of non-zero coefficients
γSJ

such as (10) is true. One has only to find such a solu-
tion of (10) and then place the coefficients on the locations
J of γS . The signal x can be then generated as x = DγS .
The least-squares solution γA = D†x will have zeros at the
locations in I .

When generating bisparse signals this way, it is possible
for γA to accidentally have additional zero coefficients be-
sides the locations in I . Thus, an l× k matrix MIJ with rank
smaller than k only guarantees that cosparsity l′ of γA is at
least l, but not necessarily equal to it, l′ ≥ l.

Theorem 3.1 shows that it is always possible to find k-
sparse signals that are also l-cosparse up to l ≤ k − 1, irre-
spective of where the non-zero coefficients of γS and the ze-
ros of γA are located, since l < k implies that rank(MIJ) <
k, ∀I, J .

For l ≥ k, however, there exist (k, l)-bisparse signals only
if the sparsity and co-sparsity patterns I and J happen to cor-
respond to a rank deficient minor matrix MIJ of D†D. Thus,
such signals are not guaranteed to exist. Their existence is
strictly determined by the distribution of linear dependent mi-
nors in the D†D matrix. Our simulations show that the sec-
ond case is negligible for a reasonable high overcompleteness
factor (about N/d > 1.5), i.e. the vast majority of bisparse
signals have l < k. An in-depth characterization of this dis-
tribution for a general dictionary D would be interesting, but
is outside the scope of the current paper.

4. RESULTS: COMPARING SYNTHESIS AND
ANALYSIS RECOVERY

For each of the d2 pairs (k, l) with k = 1, 2, ...d and l =
0, 1, 2, ...d − 1 we attempt to generate 1000 (k, l)-bisparse
test signals with a dictionary D. We generate D as a random
tight frame of size 20× 50. The signals are generated accord-
ing to the following procedure: (i) choose random subsets
I, J ⊂ {1, 2, ...N} with card(I) = l and card(J) = k; (ii)
check whether the minor matrix MIJ has rank smaller than
k (Theorem 3.1); (iii) if yes, find a random solution to (10)
and place the coefficients on the locations J of γS ; (iv) com-
pute the actual signal x = DγS , and (v) compute γA = D†x,
count the number l′ of zeros and assign x to the set of (k, l′)-
bisparse signals.

To investigate robustness against approximate sparsity,
when generating signals we optionally add a small non-
sparse random component to the exact-sparse decomposition
γS , with energy equal to 1% of γS . Thus the resulting signal
x will be only approximately sparse and cosparse.

We take m zero-mean, unit-norm random linear measure-
ments of each signal and reconstruct with synthesis-based re-
covery (4) and analysis-based recovery (8), respectively. For
synthesis recovery we use the Smooth L0 algorithm (SL0)
[12] for `0 recovery (the choice of the algorithm is not crit-
ical). For analysis recovery we also use a version of SL0,
adapted to analysis recovery by incorporating the extra or-
thogonality constraint of (7) (see [10] for details as well as
examples of using this approach for other synthesis recovery
algorithms). We compute the percentage RMS (Root-Mean-
Square) error of the reconstructed signal x̂ defines as

R(x) =

√∑
(xi − x̂i)2∑

x2i
. (11)

A smaller value of R indicates a better reconstruction, with
R = 0 meaning perfect reconstruction. For every pair (k, l)
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Fig. 1: Ratio of average reconstruction errors obtained with synthesis and analysis recovery, respectively, for signals simulta-
neously k-sparse and l-cosparse. On the left side, the signals are exact-sparse, whereas on the right side a small non-sparse
component of 1% energy is added. A small value indicates smaller errors with synthesis recovery, large values indicate smaller
errors for analysis recovery. The dark separation line indicates the 0.5 frontier (similar performance)

we define the averaged error RS,Akl as the average R(x) for
all the signals of the (k, l) pair, with indices S and A indi-
cating synthesis or analysis recovery, respectively. The ratio
RSkl/R

A
kl indicates which kind of recovery is better: a value

smaller than 1 indicates that synthesis reconstruction achieves
lower average errors, otherwise analysis recovery is the better
option.

In Fig.1, we plot the quantity

Rkl =

(
1 +

RAkl
RSkl

)−1
(12)

for exact-sparse signals as well as approximate sparse signals.
A value of Rkl = 0.5 indicates similar performance of the
two reconstruction algorithms. If synthesis performance is
better, the value ofRkl tends to 0, whereas if analysis is better,
it approaches 1. For each (k, l) pair we attempt to generate
1000 signals. However, for l ≥ k we cannot guarantee to
find as many, as explained in Section 3. We use the intensity
of the color to indicate the number of (k, l)-bisparse signals
actually found in 1000 attempts, with pure white indicating
that no such signal could be found. We show the results for
three different values of the m (3, 11, and 17) to illustrate the
influence of the number of measurements.

The first notable fact is that we could not find any (k, l)-
bisparse signals for l ≥ k, and thus we have no data for
the lower triangular part of every plot. Further simulations
confirm this finding for all other random dictionaries, as long
as the overcompleteness factor N/d remains reasonably large
(e.g. N/d larger than about 1.5). Under these assumptions,
the results suggest that the (k, k− 1) main diagonal is in gen-
eral a maximum limit for joint sparsity and cosparsity, i.e. a k-
sparse signal cannot be in general more than (k−1)-cosparse
at the same time. In other words, a very synthesis-sparse sig-
nal x cannot simultaneously be very analysis-cosparse for the
same D, and vice-versa.

This result is an interesting argument on the difference be-
tween synthesis and analysis reconstruction in the overcom-
plete case, suggesting that the two sparsity models cannot be

in general simultaneously adequate for a signal. However,
it does not hold for certain dictionaries which enforce par-
ticular relations between the atoms. For example, if D is an
equiangular tight frame, all the off-diagonal elements ofD†D
have the same absolute value, and it is therefore much eas-
ier to find linear dependent minor matrices of D†D of larger
size than usual, and thus (k, l)-bisparse signals that are more
sparse than usual. This suggests than the (k, k−1) joint spar-
sity limit is valid only in a probabilistic sense. Even though,
it can still be useful when working with learned dictionaries,
which generally do not have any particular relation enforced
between the atoms.

When approaching the complete case (N/d approaching
1), the pattern evolves dramatically, as depicted in Fig.2. The-
orem 3.1 shows that finding a (k, l)-bisparse signal depends
on the rank of the corresponding MIJ minor matrix being
smaller than k. The patterns in Fig.2 are, therefore, an illus-
tration of the probability of finding linear dependent minor
matrices of size l× k inside the matrix D†D, for random dic-
tionariesD of various sizes. WhenD is a basis,N/d = 1, the
plot concentrates strictly on the first diagonal. This is because
in this case the two solutions γS and γA are identical, and
therefore a k-sparse signal is automatically (d− k)-cosparse.
Further analysis of these distribution patterns, although inter-
esting, is however outside the scope of this paper.

A second interesting observation is that analysis recov-
ery performs well with sufficiently cosparse signals when the
number of measurements is large, Fig.1(c), but is less reliable
than its synthesis counterpart for fewer measurements and for
approximately-sparse signals. In Fig.1(b), analysis recovery
is not accurate even for the most cosparse signals (lower-right
corner), while synthesis recovery works better for very sparse
signals (upper-left corner). In Fig.1(d),(e),(f), a small non-
sparse component of 1% energy is added to the test signals.
One observes that analysis recovery is significantly more af-
fected by this non-sparse component than synthesis recovery.
We conclude therefore that analysis recovery is less robust to
approximate sparsity and insufficient measurements than syn-
thesis recovery.
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Fig. 2: Percentage of successfully generated signals that are jointly k-sparse and l-cosparse, for a random dictionary of size
d×N with small overcompleteness factor. White indicates that no (k, l)-bisparse signals could be generated in 1000 attempts,
and black indicates the all 1000 (k, l)-bisparse signals have been generated.

5. CONCLUSIONS

In this paper we conducted an experimental investigation into
determining when is one of the analysis and synthesis sparsity
models better than the other in terms of recovering a signal
from a few random measurements. Our approach is based on
reformulating analysis sparsity as least-squares constrained
synthesis sparsity. We consider (k, l)-bisparse signals, i.e.
signals that are simultaneously k-sparse in a random dictio-
nary and l-cosparse with the pseudoinverse of that dictionary.
We generate bisparse test signals for every possible (k, l) pair,
reconstruct them separately using both synthesis and analysis
recovery, and compare the average recovery errors obtained
with the two methods.

The results indicate than the two recovery options perform
similarly when recovering signals that are sparse according to
the corresponding sparsity model, when the number of mea-
surements is sufficient. However, analysis recovery is signif-
icantly more affected than synthesis recovery by a reduction
in the number of measurements, and is also less robust with
signals that are only approximately sparse. In addition, we
find that for random dictionaries with reasonably large over-
completeness factor there is a limit of how much joint sparse
and cosparse a signal can be, with a k-sparse signal being in
general at most (k − 1)-cosparse.

As future work, it will be interesting to conduct similar
simulations with `1-sparse signals instead of exact-sparse, in-
creasing the practical usefulness of the results. We also aim to
fully investigate the influence of the dictionary size for small
overcompleteness factors.
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