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ABSTRACT
The imperfections of practical receivers such as nonwhite

noise floor, noise power uncertainty and spurs normally have

large influence on the performance and stability of spectrum

sensing. However, in most of the literatures about spectrum

sensing, part of or all of theses imperfections are ignored and

only addictive white Gaussian noise (AWGN) is assumed in

many cases. In this paper, two spectrum sensing algorithms

are proposed using frequency-domain processing. The first

one is a blind detection and the second one takes the known

power spectrum density (PSD) of the target signal as a tem-

plate. Analysis and simulations show that they are equivalent

or similar to some reported spectrum sensing algorithms. The

advantage of the proposed ones is that the imperfections can

be easily mitigated at nearly no cost of extra complexities,

which makes it more feasible to low-cost implementations.

Index Terms— spectrum sensing, receiver imperfections,

practical issues, PSD estimation, cognitive radio

1. INTRODUCTION

In cognitive radio, one of the key functionalities is the sens-

ing for available spectrum resources. The most basic and im-

portant type of spectrum sensing is detecting the presence of

licensed primary user (PU)’s signal preformed by the cogni-

tive secondary user (SU). Particularly, there are specific re-

quirements on the probabilities of missed detection (PMD) at

certain signal-to-noise ratio (SNR) levels with desired prob-

ability of false alarm (PFA) and observation time. The P-

MD means the effectiveness in detecting the target signal,

while the PFA should be sufficiently low and constant in order

to guarantee good utilization of available spectrum resources

and stable quality of service (QoS).

Generally, there are three types of signal detection meth-

ods: energy detection, whiteness detection and feature detec-

tion.

• Energy detection tests only the change of received en-

ergy, which is a blind detection requiring no a priori in-

formation about the target signal. It suffers greatly from

the noise power uncertainty (NPU) problem which pre-

vents the reduction of PMD through increasing obser-

vation time [1][2].

• The “whiteness” of signal can be characterized in time

domain by the autocorrelation of Dirac delta function

and in frequency domain by the constant power spec-

trum density (PSD). Wireless signals normally exhibit

nonwhiteness due to limited bandwidth, pulse shaping

and the non-stationary properties caused by repeated

preamble and pilot structures. The whiteness detection-

s [3, 4] utilize this property to differentiate the signal

from white noise, which is also blind.

• Various features of wireless signals can be used in de-

tection, such as known preamble, pilot, cyclostation-

arity caused by periodicity in modulation scheme and

the templates from pulse shaping, PSD and covariance

matrix. The techniques such as matched filtering (MF),

autocorrelation and spectral analysis, etc. can be used

to exploit these features for detection.

The comprehensive studies on various types of spectrum sens-

ing methods can be found in [5] and [6].

The imperfections of practical receivers usually have

large influence on the accuracy and stability of spectrum

sensing. These imperfections mainly include NPU, nonwhite

noise floor caused by the responses of filters in receiver, spurs

caused by harmonics from mixer, local oscillator (LO) leak-

age, DC offset, etc. However, in most of the literatures about

spectrum sensing, part of or all of these imperfections are

ignored and only additive white Gaussian noise (AWGN) is

assumed in many studies.

In this paper, we propose two signal detection algorithms

in which these imperfections of receiver can be easily mitigat-

ed at almost no cost of extra complexities. The first one is a

blind detection method based on testing the received signal’s

whiteness, which is similar to the covariance matrix based

eigenvalue detection [3][4], however, the test is performed

in frequency domain on estimated power spectrum densi-

ty (PSD). The second one takes the known PSD of the target

signal as a template, which is proven to be equivalent to the

matched-filtered energy detection and the covariance matrix

based likelihood ratio test (LRT) detection [7]. In addition to

the advantage of insensitiveness to the receiver imperfection-

s, the detection performances of the proposed methods are

comparable to the reported equivalent or similar ones, which

is confirmed by computer simulations.
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2. THE PROPOSED SIGNAL DETECTION

2.1. Signal Model

The signal detection in spectrum sensing can be modeled into

a binary hypothesis test problem on the received signal y[n]:

H0 : y[n] = w[n] + s[n]

H1 : y[n] = x[n] + w[n] + s[n],
(1)

in which x[n] is the target signal with channel fading, w[n]

and s[n] are the noise and spur signals in receiver respectively.

The H1 and H0 denote the two hypotheses when the target

signal is present or absent. A detection metricΛ is defined for

distinguishingH1 fromH0, which is the result of a processing

on y[n]. Then the metric is compared to a threshold γ for

decision:

Λ = F {y[n]}
H1

�
H0

γ. (2)

The PMD and PFA are defined by

PMD = Pr
{
Λ < γ

∣∣∣∣H1

}
, PFA = Pr

{
Λ ≥ γ

∣∣∣∣H0

}
. (3)

In practice, the PFA is given first based on the SU’s require-

ments on spectrum utilization and QoS. Then the threshold γ
is calculated according to the prerequisite PFA.

2.2. PSD Estimation and Removal of Receiver Imperfec-
tions

The proposed detection methods are based on the PSD of

y[n], which can be estimated using Welch’s method [8]. First,

y[n] are divided into K segments for discrete Fourier transfor-

m (DFT) with length NDFT . Each segment is shifted from the

previous one by step D:

Yi[m] =

NDFT−1∑
n=0

y[iD + n]v[n]e− j2π nm
NDFT m = 0, 1, ...,NDFT − 1 , (4)

in which v[n] is a smoothing window of length NDFT . Then

the PSD of y[n] can be approximated by

Ŷ[m] =

∑K−1
i=0

∣∣∣∣Yi[m]

∣∣∣∣2
K
∑NDFT−1

n=0
v2[n]

. (5)

From (4) it can be inferred that each segment has NDFT − D
samples overlapped with neighboring segments. When hy-

pothesis H0 holds, Ŷ[m] is the average of 2K gaussian vari-

ables, hence it can be modeled by Chi-squared distribution.

In [8] it was illustrated the overlapping can increase Ŷ[n]’s

equivalent degree of freedom (EDF), thus decrease the vari-

ance of the estimates resulting in better detection perfor-

mance. Based on the analysis in [8],

Var
{
Ŷ[m]
}
=

Var
{∣∣∣Yi[m]

∣∣∣2}
K

{
1 + 2

K−1∑
k=1

K − k
K

ρ[k]

}
, (6)

in which

ρ[k] =

{∑NDFT−1
n=0

v[n]v[n + kD]∑NDFT−1
n=0

v2[n]

}2

. (7)

Based on (5) and (6), Ŷ[n] has the EDF of

ζ =
2Var
{∣∣∣Yi[m]

∣∣∣2}
Var
{
Ŷ[m]
} =

2K

1 + 2
∑K−1

k=1
K−k

K ρ[k]
. (8)

The multiplication by two in (8) is because yi[n] are complex

values with independent real and imaginary parts.

Two receiver imperfections need to be addressed. First,

in order to eliminate the destruction of spurs, the frequency

components belonging to them should be excluded in detec-

tion. We define S to be the index set of frequencies without

spurs. The other imperfections is that the noise in receiver

is not perfectly white due to the response of filters, thus, the

noise floor is not flat. The shape of the noise floor Ŵ[m] can

be accurately estimated using (4) and (5) by averaging large

number of segments, which can be then used to equalize the

estimated PSD Ŷ[m]:

Ŷeq.[m] =
Ŷ[m]

Ŵ[m]
. (9)

2.3. PSD Whiteness Detection

In hypothesisH0, Ŷeq.[m] converges to a constant when K →
∞. Since the target signal is not white, the Ŷeq.[m] is not a

constant in hypothesis H1, thus, Ŷeq.[m]’s geometric mean is

larger than its arithmetic mean. Hence, the whiteness detec-

tion can be performed by testing their quotient:

ΛPS D−AG =

∑
m∈S

Ŷeq.[m]

NS

( ∏
m∈S

Ŷeq.[m]
) 1

NS

, (10)

in which NS is the size of the set S and AG denotes arithmetic

and geometric means. It should be noticed that theΛPS D−AG is

a ratio value which is dimensionless, so it is not relevant to the

magnitude of received signal’s power. Then the calculation

of threshold does not require the knowledge of noise power.

Therefore, the PSD-AG is not affected by the NPU problem.

2.4. PSD Template Detection

When the knowledge of the target signal’s PSD X̌[m] is avail-

able, it can be used as a template, which is correlated with the

estimated and equalized PSD of received signal, resulting in

a second detection metric [7]:

ΛPS D−T =
∑
m∈S

Ŷeq.[m]X̌[m]. (11)

This detection metric has the same dimension as the signal

power, hence it is influenced by the NPU problem. Here we

propose a solution which can eliminate the NPU’s influence

on PFA and PMD, which is based on the cancelation of the

detection metric’s dimension:

ΛPS D−TC =

∑
m∈S

Ŷeq.[m]X̌[m]

∑
m∈S

Ŷeq.[m]
. (12)
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2.5. Similar or Equivalent Detections in Time Domain

2.5.1. Whiteness Detection

In [3] and [4], it is proposed that the whiteness of signal can

be also tested using the covariance matrix (CM) of received

signal, which can be estimated statistically by

R̂y =
1

N − Nc + 1

N−Nc+1∑
i=1

yiy∗i (13)

in which N is the total number of samples used in detection, ∗
denotes the conjugate transposition of matrix and yi is a vector

consist of Nc successive samples:

yi =
(
y[i], y[i + 1], ..., y[i + Nc − 1]

)T
, (14)

with (·)T denoting matrix transposition. The elements in R̂y

are essentially time-domain autocorrelations of the received

signal y[n]. Therefore, it can be inferred that

H0 : R̂y = σ
2
wI

H1 : R̂y = Rx + σ
2
wI,

(15)

in which Rx is the covariance matrix of the target signal, σ2
w

is the power of noise and I denotes identity matrix.

One method of whiteness detection is to test the ratio

of maximum and minimum eigenvalues (MME) [4]. First,

eigenvalue decomposition is performed on R̂y:

R̂y = ΦyΨy Φ
T
y

Ψy = diag(ψy,1, ψy,2, ..., ψy,Nc )
(16)

in which ψy,n are the eigenvalues satisfying ψy,1 ≥ ψy,2 ≥ ... ≥
ψy,Nc . Then the detection metric becomes

ΛCM−MME =
ψy,1

ψy,Nc

. (17)

In [3], an alternative method called covariance absolute val-

ue (CAV) detection is proposed and implemented. It also

shows that this detection method shows a performance very

close to that of MME detection. The detection metric of CAV

detector is

ΛCM−CAV =

∑Nc
m=1

∑Nc
n=1
|rmn |∑Nc

m=1
|rmm |

, (18)

in which rmn are the elements in R̂y. The advantage of CAV

detection over MME detection is that the computational cost-

ly eigenvalue decomposition is not needed. Since the detec-

tion metrics of CM-MME and CM-CAV are ratio values with-

out dimension, they are not affected by NPU problem which

is similar to the proposed PSD-AG detection.

2.5.2. Template Based Detection

In [9] and [7], it was shown that the known CM of the target

signal Rx can be taken as a template in detection. If the noise

power σ2
w is also known to the detector, an optimal estimator-

correlator (EC) detection is derived in [10]:

ΛCM−EC =
1

N − Nc + 1

N−Nc+1∑
i=1

y∗i Rx(Rx + σ
2
wI)−1yi. (19)

Notice that the diagonal components of Rx are actually equal

to the signal power σ2
x, thus, the SNR should also be known

to the detector. When SNR is low, Rx + σ
2
wI ≈ σ2

wI, then the

EC detection in (19) is reduced to the CM based likelihood

ratio test (LRT) detection at low SNR [7].

ΛCM−LRT =
1

N − Nc + 1

N−Nc+1∑
i=1

y∗i Rxyi. (20)

Alternatively, when the pulse shaping filter of the target

signal’s PSD g[m] is known, it can be used as template in

detection. The matched filter of g[m] is formulated by

f [m] = g†[M − 1 − m], (21)

in which † denotes conjugate operation. The detection metric

can be defined by the energy of matched-filtered signal:

ΛMF−EG =

N−1∑
n=0

∣∣∣∣
M−1∑
m=0

f [m]y[n − m]
∣∣∣∣2. (22)

The next section will prove analytically that the PSD-T

detection is actually equivalent to CM-LRT and MF-EG.

2.5.3. The Equivalence of PSD-T, CM-LRT and MF-EG

a) The Equivalence of MF-EG and CM-LRT
The convolution operation of matched filtering in (22) can

be represented in matrix form

y f = F∗y, (23)

in which y = (y[0], y[1], ..., y[N − 1])T is the vector of the

received signal’s samples and

F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f [0] f [1] . . . f [M − 1] 0 . . . 0
0 f [0] f [1] . . . f [M − 1] . . . 0

.

.

.
.
.
.

. . .
. . .

.

.

.
. . .

.

.

.
0 . . . . . . f [0] f [1] . . . f [M − 1]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (24)

in which f [m] is the impulse response of the matched filter.

The detection metric of MF-EG can be then rewritten as

ΛMF−EG = E(y∗FF∗y). (25)

The transmitted signal x can be modeled as an independent

and identically distributed process z filtered by the pulse shap-

ing filter. Since the detection focuses only on the spectrum

template, the non-random structures in the target signal, such

as preambles, pilot tones and cyclic prefix are ignored. The

pulse shaping can be then denoted by

x = Fz†. (26)

Assume the variance of z is normalized to 1, based on (13),

the covariance matrix of z becomes identity matrix:

E(zz∗) = E(z†zT ) = I. (27)

Then the covariance matrix of the target signal x becomes

Rx = E(xx∗) = E(Fz†zT F∗) = FE(z†zT )F∗ = FF∗. (28)

Recalling the detection metric of MFD-EG in (25),

ΛMF−EG = E(y∗FF∗y) = E(y∗Rxy) = ΛCM−LRT . (29)
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Fig. 1. The PSD of the target WM signal with nonwhite noise floor

and two spurs, bandwidth: 200 kHz, sampling rate: 500 k/s
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Fig. 2. PMD of PSD-AG and CM-CAV on WM signal with

nonwhite noise floor, bandwidth: 200kHz, sampling rate: 500k/s,

NDFT = 64, D = 32, CM size:32, observation time:0.2ms, PFA:0.01

This ends the proof of MF-EG and CM-LRT’s equivalence.

b) The Equivalence of CM-LRT and PSD-T
The DFT operation for estimating the PSD of the target

signal using Welch’s method can be written as

xF =Wx, (30)

in which W is the DFT matrix defined by

W =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1

1 w w2 . . . wNDFT −1

1 w2 w4 . . . w2(NDFT −1)

.

.

.
.
.
.

.

.

.
.
.
.

1 wNDFT −1 w2(NDFT −1) . . . w(NDFT −1)(NDFT −1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(31)

with w = e− j2π/NDFT and WW∗ = I. Define another matrix

Sx =WRxW∗ =WE(xx∗)W∗ = E(Wxx∗W∗)

= E(xFx∗F) = diag(X̌[0], X̌[1], ..., X̌[NDFT − 1]),
(32)

in which X̌[m] is the PSD template of the target signal x. The

detection metric of PSD-T can then be formulated by

ΛPS D−T = E
(
y∗FSxyF

)
= E
(
(Wy)∗Sx(Wy)

)
= E
(
y∗W∗WRxW∗Wy

)
= E
(
y∗Rxy

)
= ΛCM−LRT .

(33)

This ends the proof of CM-LRT and PSD-T’s equivalence.
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Fig. 3. PMD of PSD-AG and CM-CAV on WM signal with spurs,

bandwidth: 200kHz, sampling rate: 500k/s, NDFT = 64, D = 32,

CM size:32, observation time:0.2ms, PFA:0.01

3. SIMULATION RESULTS

3.1. Noise Floor Equalization and Spur Removal

We first simulate the performance of the proposed PSD-AG

detection with nonwhite noise floor and spurs. Fig. 1 presents

the PSD of received wireless microphone (WM) signal with

unflat noise floor and two spurs.

It is illustrated in (9) that the unflat noise floor can be e-

qualized in the proposed PSD based detections. Fig. 2 shows

that in PSD-AG and CM-CAV detections, the equalization

can reduce the PMD notably to about the same level as the

case when the noise floor is white.

In Section 2.2, it is illustrated that the spur’s destruction

can be straightforwardly removed in PSD based detections.

Fig. 3 shows that, when the spurs are removed, the PSD-AG’s

detection performance is only slightly worse than the case

when there is no spur. However, when the spurs are presented,

the CM-CAV detection fails completely.

3.2. Comparison of PSD and CM based Detections

It is shown in Fig. 4 that reducing the shifting step D to

0.5NDFT in PSD estimation can improve the detection per-

formance to about the same level as the CM based detection.

This result confirms the equivalence between PSD-T and

CM-LRT detections. The performance improvement when

D = 0.5NDFT can be explained by the increase of the EDF in

PSD estimation by about 34%, which is calculated using (8).

3.3. PSD based Detections with Noise Power Uncertainty

The NPU is modeled using the robust statistic method pre-

sented in [2]. Particularly, the upper limit of noise power is

used to calculate PFA while the lower limit is used to calculate

PMD, which considers the worst case in NPU. In [2], the N-

PU of 1 dB is concluded for typical receivers. Fig. 5 shows the

“SNR wall” for PSD-T that the detection performance cannot

be improved by increasing observation time when the NPU
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Fig. 4. Comparison of PSD and CM based detections on ATSC

signal, bandwidth: 6 MHz, NDFT = 64, D = 32, CM size: 32, obser-

vation time: 0.4 ms, PFA: 0.01, flat fading
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Fig. 5. PSD based detections on ATSC signal with NPU, band-

width: 6 MHz, NDFT = 64, D = 32, PFA: 0.01

is present. However, the proposed modified detection PSD-

TC is not sensitive to NPU at the cost of some performance

loss. The blind PSD-AG detection is inherently not sensitive

to NPU, but its performance is worse than the PSD-TC.

3.4. PSD based Detections with Multipath Channel

It is shown in Fig. 6 that the blind PSWD-AG detection can

perform better in multipath channel (WRAN Type B channel

[11]) than in flat fading channel. This is because the non-

whiteness of the target signal is actually strengthened by the

frequency selectivity of the multipath channel.

4. CONCLUSION

Two signal detection methods based on frequency-domain

processing are proposed in this paper, both are insensitive to

receiver imperfections, such as nonwhite noise floor, NPU

and spurs. One method named PSD-AG is blind detection

based on testing the whiteness of the received signal using es-

timated PSD. The other one named PSD-TC takes the known

PSD of the target signal as a template for detection and the

solution for eliminating the effect of the NPU problem for this

-16 -14 -12 -10 -8 -6 -4 -2 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SNR (dB)

PM
D

PSD-TC,AWGN
PSD-AG,AWGN
PSD-TC,WRAN B
PSD-AG,WRAN B

Fig. 6. PSD based detections on ATSC signal in multipath chan-

nel [11], bandwidth: 6 MHz, NDFT = 64, D = 32, PFA: 0.01

detection is also proposed. It’s proven analytically that the

later one is equivalent to reported robust covariance matrix

based LRT detection and matched-filtered energy detection.

Apart from the advantage of removing receiver imperfections,

computer simulations show that the proposed detections has

comparable performances to their equivalent or similar re-

ported detections. It also shows the blind PSD-AG detection

can performs better in multipath channel than in flat-fading

channel. The proposed signal detection methods are well

suited to implementations of spectrum sensing on low-cost

hardware with strong receiver imperfections.
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