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ABSTRACT

Back-pressure routing and power control policies are well-appreciated

for maximizing throughput in wireless multi-hop networks, where

power control is used to manage interference in a way that ultimately

optimizes throughput, a network-layer performance measure. In ad-

dition to transmitter power control, interference can be mitigated via

selective receiver-side signal cancellation, provided that the signal

to be cancelled can be reliably decoded. This paper considers joint

back-pressure power control and interference cancellation, assum-

ing that each receiver can cancel at most one interfering signal. It

is shown that the joint problem is NP-hard, and a suitable convex

approximation is developed and shown to yield significant gains in

terms of end-to-end throughput relative to power control alone. The

main methodological contribution is in terms of a fortuitous reformu-

lation of the joint problem, which is of potentially broader interest.

Keywords: Back-pressure, power control, interference cancellation,

NP-hard, convex approximation

1. INTRODUCTION

Maximizing the overall throughput of a network is a core objective

that underpins most modern approaches to network design and op-

eration. Twenty years ago, Tassiulas [4] showed that a conceptually

simple control policy known as back-pressure enables maximal sta-

ble throughput. Back-pressure favors links and flows with high dif-

ferential backlog, which is intuitive for congestion control; the sur-

prise is that this seemingly greedy congestion relief strategy is opti-

mal from the viewpoint of maximizing network throughput [4]. Over

the past decade, research in cross-layer wireless networking has re-

ally picked up, driven by demand for higher data rates and compan-

ion technological advances resulting in sophisticated base stations,

access points, and mobile radios with significant processing power.

These have in turn enabled implementation of rather sophisticated

algorithms for routing, scheduling and power control.

Back-pressure is currently an important component of modern

approaches to network routing, transmission scheduling, and resource

allocation, e.g., see [2, 6] and references therein. In the case of wire-

less networks, assuming nodes treat interference as noise and link

rates are governed by the Shannon capacity formula (possibly gap-

adjusted for modulation loss and coding gain), it was recently shown

in [1] that the core problem to be solved at the physical layer, dubbed

Back-Pressure Power Control (BPPC) is NP-hard. The good news in

[1] is that BPPC can be affectively approximated, using a sequential

convex approximation strategy.
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In addition to transmitter power control, interference cancella-

tion can be employed to mitigate interference on the receiver side,

provided that the signal to be cancelled can be reliably decoded, i.e.,

it is received at sufficiently high signal to interference plus noise ra-

tio (SINR) at the given receiver. Unless transmissions are carefully

coordinated (e.g., spread with a large spreading factor and subject

to only limited near-far effects), it is realistic to assume that at most

one interferer can be cancelled at a given receiver at a time. This re-

striction is also appealing from a receiver complexity point of view,

hence will be adopted for the sequel. Whether a receiver can can-

cel a particular transmission obviously depends on power control, as

the latter affects the SINR at which any transmitter is heard at any

receiver. Thus interference cancellation cannot be an afterthought -

it has to be optimized jointly with power control across the network.

Joint power-control and interference cancellation for maximizing the

minimum SINR for co-channel links, has been considered in [7] us-

ing a mixed integer linear programming framework. In this paper,

we consider joint the BPPC and interference cancellation problem

for multi-hop networks. Not surprisingly, the joint problem is NP-

hard, similar to its power-only counterpart. Interestingly, it is shown

here that the joint problem can be conveniently re-formulated in a

way that enables effective sequential convex approximation. The

novel formulation and convex approximation methodology is shown

to yield significant gains in terms of end-to-end throughput relative

to power control alone.

It is worth noting that the joint problem considered here involves

both continuous and discrete control variables: transmission powers

and whether to cancel (and which signal) or not, at each receiver.

If the control space is purely discrete and finite, it turns out that a

greedy randomization policy is also optimal from a throughput point

of view, as shown in [5]. This consists of drawing a random policy

per scheduling slot, comparing it to the current one, and adopting the

new one only if it yields better objective. In addition to formulating

and approximating the joint problem of picking transmission pow-

ers and making interference cancellation decisions that maximize

the differential-backlog weighted sum rate (called BPPC-IC in the

sequel), we therefore also consider BPPC-RIC (for Randomized In-

terference Cancellation), a simpler strategy that essentially requires

solving a power control (BPPC-type) problem per slot.

2. SYSTEM MODEL

Consider a wireless multi-hop network with N nodes. The topology

of the network is represented by the directed graph (N ,L), where

N := {1, . . . , N} and L := {1, . . . , L} denote the set of nodes

and the set of links, respectively. Each link ℓ ∈ L corresponds to

an ordered pair (i, j), where i, j ∈ N and i 6= j. Let Txℓ and Rxℓ
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denote the transmitter and the receiver of link ℓ, i.e., when ℓ = (i, j),
then Txℓ = i and Rxℓ = j. For simplicity of exposition, assume

that node 1 is the source and node N is the destination - our results

generalize easily to the case of multiple sources and destinations, see

[1]. In each time slot, data can be transmitted by all nodes except

the destination. Let pℓ denote the power transmitted on link ℓ and

Gℓk the aggregate path loss between Rxℓ and Txk. The Signal to

Interference plus Noise Ratio (SINR) at the receiver of link ℓ is

γℓ =
Gℓℓpℓ

1
Gsg

∑L
k=1
k 6=ℓ

Gℓkpk + Vℓ

, (1)

where Vℓ is the background noise power, and Gsg models spreading

/ beam-forming gain. The SINR at the ℓth link receiver, when it tries

to decode the transmission of the kth link, is given by

γℓk =
Gℓkpk

1
Gsg

∑L
m=1
m 6=k

Gℓmpm + Vℓ

; ∀k ∈ Lℓ−\{0}, ∀ℓ ∈ L, (2)

where Lℓ− = {0}
⋃

{L\{ℓ}}. If γℓk is greater than a specified

threshold value T , then the ℓth link receiver can reliably decode the

transmission of the kth link and subsequently cancel its contribution

from the received signal. We define a set of indicator random vari-

ables {{clk}k∈L
ℓ−

}ℓ∈L to denote whether or not link ℓ cancels

link k. For k 6= 0,

cℓk =

{

1, if link ℓ cancels link k

0, otherwise
(3)

For k = 0, cℓ0 corresponds to no interference cancellation, i.e.

cℓ0 = 1 if cℓk = 0 ∀ k ∈ Lℓ−\{0}, ∀ ℓ ∈ L (4)

The following constraint is introduced to enforce (4) as well as model

that each receiver can cancel at most one interferer at a time

L
∑

k=0
k 6=l

cℓk = 1, ∀ ℓ ∈ L (5)

From (3)-(5), it can be seen that for each link ℓ ∈ L only one of the

{cℓk}k ∈ L
ℓ−

can be equal to 1. Thus, the transmission rate on link

ℓ is given by

Rℓ =
L
∑

m=0
m 6=ℓ

log (1 + cℓmSINRℓm) (6)

where cℓm ǫ {0, 1} as defined in (3), and SINRℓm is the Signal to

Interference plus Noise Ratio at the receiver of the ℓth link after

cancelling the transmission on the mth link, given by

SINRℓm =
Gℓℓpℓ

1
Gsg

∑L
k=1

k 6=ℓ,m

Gℓkpk + Vℓ

. (7)

The system is slotted in time, indexed by t. Let Wi(t) denote the

backlog of packets at each node i at the end of slot t. The differential

backlog of link ℓ = (i, j), at the beginning of slot t, is defined as [4]

Dℓ(t) :=

{

max{0,Wi(t)−Wj(t)}, j 6= N

Wi(t), j = N.
(8)

The traffic flow in each link during each time slot is based on the

link capacities resulting from the power allocation {pℓ}ℓ ∈ L and

cancellation coefficients {cℓk}k∈L
ℓ−

at the beginning of the slot.

The powers and cancellation coefficients of each link for slot t are

determined by solving an optimization problem which maximizes

the differential-backlog weighted sum-rate of the wireless network

[4, 5, 1]

Π1

max
{pℓ}ℓ∈L

{{cℓm}m∈L
ℓ−

}ℓ∈L

L
∑

ℓ=1

Dℓ(t)
L
∑

m=0
m6=ℓ

log (1 + cℓmSINRℓm)

s.t. 0 ≤ pℓ ≤ P ∀ℓ ∈ L, (9)

cℓk ∈ {0, 1}, ∀k ∈ Lℓ− , ∀ℓ ∈ L,
L
∑

k=0
k 6=l

cℓk = 1 ∀ℓ ∈ L

Gℓkpk
1

Gsg

∑L
m=1
m6=k

Gℓmpm + Vℓ

≥ Tcℓk

∀k ∈ Lℓ−\ {0}, ∀ℓ ∈ L

The last set of inequalities is most interesting, and the only one

whose role has not been explained so far. Each of these inequalities

is active when the corresponding cℓk = 1, and is trivially satisfied

when cℓk = 0. When active (i.e., link ℓ chooses to cancel link k), it

ensures that the transmission of link k can be reliably decoded at the

receiver of link ℓ, i.e., the SINR at which the latter hears the trans-

mission of link k is at least T , a modulation and coding - dependent,

user-specified parameter.

Unfortunately, problem Π1 is computationally intractable. The

following formal claim can be established by reduction to the plain

BPPC problem considered in [1]:

Claim 1 Joint back-pressure power control and interference can-

cellation problem Π1 is NP-hard.

Proof: For T > T̄ (G, P ) = maxℓ∈L,k∈L
ℓ−

GℓkP

Vℓ
, there is no

choice of {pℓ}ℓ∈L that can support cℓk = 1 for some ℓ and k 6= 0.

Therefore, the optimal value of all cancellation coefficients has to be

{c∗ℓ0 = 1}ℓ∈L and {{c∗ℓk = 0}k∈L
ℓ−

\{0}}ℓ∈L, which is equivalent

to the case of no interference cancellation. Therefore, problem Π1

contains the BPPC problem in [1] as a special case; any instance of

the latter, Π′(G, P ), can be mapped to an instance of Π1, namely

Π1(G, P, T ) with T > T̄ (G, P ). The result then follows from

NP-hardness of BPPC [1].

2.1. Interval relaxation

In the optimization problem Π1, the cancellation coefficients cℓk are

restricted to binary values. Rewriting the interference cancellation

constraints for any link ℓ ∈ L and for some m, n ∈ Lℓ− with

m 6= n, we have

Gℓmpm
∑L

j=1
j 6=m

Gℓj

Gsg
pj + Vℓ

≥ Tcℓm ⇒
Gℓmpm

Gℓnpn
≥

Tcℓm

Gsg

Gℓnpn
∑L

j=1
j 6=n

Gℓj

Gsg
pj + Vℓ

≥ Tcℓn ⇒
Gℓnpn

Gℓmpm
≥

Tcℓn

Gsg

⇒
Tcℓm

Gsg

≤
Gℓmpm

Gℓnpn
≤

Gsg

Tcℓn
⇒ cℓm cℓn ≤

G2
sg

T 2

(10)
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It follows that, for high enough T (which is also required for reli-

able cancellation, and thus reliable detection of the underlying sig-

nal of interest), at least one of the two must be small. By the same

token, in fact, all except possibly one of {cℓn}n∈L
ℓ−

\{0} must be

small. Thus, even if we replace the binary {0, 1} constraints on the

cancellation coefficients with [0, 1] interval constraints, the feasible

region for these coefficients will not extend to the product space:

it will be limited close to the axes. This is illustrated in Fig. 1,

and it motivates relaxing {{cℓk ∈ {0, 1}}k∈L
ℓ−

}ℓ∈L in (9) to

{{cℓk ∈ [0, 1]}k∈L
ℓ−

}ℓ∈L. Once we have relaxed the cancella-

tion coefficients to lie in [0, 1], the summation constraint can also be

modified to
∑L

k=0
k 6=l

cℓk ≤ 1, ∀ ℓ ∈ L
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Fig. 1. Illustration of feasible region after interval relaxation for

two cancellation coefficients cℓm vs. cℓn, for
G2

sg

T2 = 10−2.

3. CONVEX APPROXIMATION

The objective function in Π1 can be rewritten as

max
{pℓ}ℓ∈L

{{cℓm}m∈L
ℓ−

}ℓ∈L

L
∑

ℓ=1

Dℓ(t)

[

L
∑

m=0
m 6=ℓ

log
(

Gℓℓpℓcℓm +

L
∑

k=1
k 6=ℓ,m

Gℓk

Gsg

pk + Vℓ

)

− log
(

L
∑

k=1
k 6=ℓ,m

Gℓk

Gsg

pk + Vℓ

)

]

(11)

Since the each term in the inner summation is a difference of two log-

arithmic functions of the optimization variables, the objective func-

tion is neither convex nor concave. In order to proceed, we will

lower bound the link rates using the following tunable concave lower

bound of log(1 + z) introduced in [3]

log(1+z) ≥ α log(z)+β for

{

α = zo
1+zo

,

β = log(1 + zo)−
zo

1+zo
log(zo)

(12)

Notice that the bound is tight at zo; and as zo → ∞, the inequality

becomes log(z) ≤ log(1 + z).
Applying (12) to Π1, the objective function can be bounded be-

low as follows.

L
∑

ℓ=1

Dℓ(t)

[

L
∑

m=0
m 6=ℓ

α
t
ℓm log (cℓmSINRℓm) + β

t
ℓm

]

(13)

The lower bound in (13) is still not concave in the variables pℓ
and cℓk, since

log(SINRℓm)
(7)
= log(Gℓℓpℓ)− log







L
∑

k=1
k 6=ℓ,m

(

Gℓk

Gsg

)

pk + Vℓ






.

(14)

Introducing a logarithmic change of variables, p̃ℓ := log pℓ, c̃ℓk :=
log cℓk, and using (13), we can approximate1

Π1 with

Π2

max
{p̃ℓ}ℓ∈L

{{c̃ℓm}m∈L
ℓ−

}ℓ∈L

L
∑

ℓ=1

Dℓ(t)

[

L
∑

m=0
m6=ℓ

α
t
ℓm

(

G̃ℓℓ + G̃sg + p̃ℓ −

log







L
∑

k=1
k 6=ℓ

e
G̃ℓk+p̃k + e

Ṽℓ






+ c̃ℓm

)

+ β
t
ℓm

]

s.t. p̃ℓ ≤ P̃ := log(P ), ∀ ℓ ∈ L, (15)

c̃ℓk ∈ [log(ε), 0], k ∈ Lℓ− , ∀ℓ ∈ L,

log







L
∑

k=0
k 6=l

e
c̃ℓk






≤ log(ε) ∀ ℓ ∈ L,

G̃ℓk + G̃sg + p̃k − log







L
∑

k=1
k 6=ℓ

e
G̃ℓk+p̃k + e

Ṽℓ






≥ log(T ) + c̃ℓk

∀k ∈ Lℓ− , ∀ℓ ∈ L.

where G̃ℓk := log
(

Gℓk

Gsg

)

, Ṽℓ := log(Vℓ) and ε is a small positive

constant, which is introduced for avoiding numerical errors (since

log(0) = −∞).

The objective function in Π2 is concave, since it is a sum of

linear and concave functions of {p̃ℓ}ℓ∈L and {{c̃ℓm}m∈L
ℓ−

}ℓ∈L.

The weights Dℓ(t) and constants αt
ℓm and βt

ℓm are nonnegative, cf.

(8) and (12). Furthermore, all constraints in Π2 are convex with

respect to optimization variables {p̃ℓ}ℓ∈L and {{c̃ℓk}k∈L
ℓ−

}ℓ∈L.

Thus, Π2 is a convex optimization problem.

4. SUCCESSIVE APPROXIMATION ALGORITHM

The convex optimization problem Π2 can be solved using a variation

of the batch successive approximation algorithm mentioned in [1].

Here, in the first iteration (n=1), we solve Π2 with αt
ℓm(n) = 1 and

βt
ℓm(n) = 0, ∀m ∈ Lℓ− , ∀ℓ ∈ L. Then, for higher iterations, us-

ing (12), (16), the values of αt
ℓm(n) and βt

ℓm(n), ∀m ∈ Lℓ− ∀ℓ ∈
L are updated using the optimal values {p̃∗ℓ}ℓ∈L, {{c̃∗ℓk}k∈L

ℓ−
}ℓ∈L

obtained from the previous iteration, in order to tighten the individ-

ual link rate lower bounds so that the bounds coincide with the link

rates at {p̃ℓ(t)}ℓ∈L and {{c̃ℓk(t)}k∈L
ℓ−

}ℓ∈L) when the objective

function value converges. The steps of the algorithm are listed be-

low.

1Even though we are maximizing a lower bound to the original objective
function in Π1, the solution to Π2 is only an approximation which may yield
a higher value of the original objective in Π1, due to the interval relaxation
introduced for {cℓk}k∈L

ℓ−
, ∀ ℓ ∈ L.
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Algorithm 1 Successive Approximation BPPC-IC:

1. Initialization: For each time slot t, calculate Dℓ(t), reset

iteration counter n = 1, and set αt
ℓm(n) = 1 and βt

ℓm(n) =
0, ∀m ∈ Lℓ− , ∀ℓ ∈ L.

2. repeat:

3. Optimization Step: Solve Π2 →{p̃∗ℓ}ℓ∈L, {{c̃∗ℓm}m∈L
ℓ−

}ℓ∈L.

4. Update step: Update αt
ℓm(n+ 1), βt

ℓm(n+ 1) according to

(12) for ∀ℓ ∈ L

z0 =





(Gℓℓ p
∗
ℓ (t, n)) c

∗
ℓm (t, n)

1
Gsg

∑L
k=1

k 6=ℓ,m

Gℓk p
∗
k(t, n) + Vℓ



 , ∀m ∈ Lℓ− ,

(16)

where p∗ℓ (t, n) = ep̃
∗
ℓ (t,n) and c∗ℓm (t, n) = ec̃

∗
ℓm (t,n), ∀m ∈

Lℓ− , ∀ℓ ∈ L

5. n = n+ 1

6. until convergence of the objective value (within ε- accuracy)

7. Rounding step: cℓk = 1, cℓm = 0, ∀m 6= k,m ∈ Lℓ−

where k = argmaxm∈L
ℓ−





(Gℓℓ p∗ℓ (t,n))c∗ℓm (t,n)
1

Gsg

∑
L
j=1

j 6=ℓ,m

Gℓj p∗
j
(t,n)+Vℓ





4.1. Random Interference Cancellation Policy

As mentioned earlier, when the control space is finite, it was shown

in [5] that a simple randomized policy is - surprisingly - optimal

from a throughput point of view (the price paid is excess delay).

This motivates comparing our joint power control and interference

cancellation algorithm (called BPPC-IC in the sequel) to what we

will refer to as BPPC-RIC (for Randomized Interference Cancel-

lation), a simpler strategy that essentially requires solving a power

control (BPPC-type) problem per slot. BPPC-RIC works as fol-

lows. At the start of each time slot, the receiver of each link ℓ ∈
L chooses any other link at random, say kℓ ∈ Lℓ− for cancella-

tion, i.e., sets {cℓk}k∈{0,kℓ} ∈ [ε, 1] and fixes the remaining co-

efficients i.e. {cℓk}k∈L
ℓ−

\{0,kℓ}, ∀ℓ ∈ L to zero (ε for avoiding

numerical errors). Then it solves optimization problem Π2 with

the above-mentioned constraints on cℓk, to obtain the optimal val-

ues of {p̃∗ℓ (t)}ℓ∈L and {{c̃∗ℓm(t)}m∈L
ℓ−

}ℓ∈L. The value of the

objective function for the present time slot attained by {p̃∗ℓ (t)}ℓ∈L

and {{c̃∗ℓm(t)}m∈L
ℓ−

}ℓ∈L is compared to the value of the objective

function for the present time slot achieved by {p̃optℓ (t− 1)}ℓ∈L and

{{c̃optℓm (t−1)}m∈L
ℓ−

}ℓ∈L (power allocation and cancellation coef-

ficients for slot t − 1), and the pair resulting in the higher value is

chosen for the present time slot. This effectively explores 2L can-

cellation configurations per slot (notice that each receiver retains the

freedom to choose between cancelling the randomly chosen link or

not), thus being in fact in-between BPPC and BPPC-IC in terms of

complexity.

5. SIMULATION RESULTS

In our simulations, we compare the performance of three algorithms:

BPPC-IC, BPPC-RIC, and BPPC-noIC (that is, plain BPPC as in

[1]). For BPPC-noIC, we employ the batch SA algorithm in [1].

The comparisons assess maximum stable throughput, and source and

relay backlogs for each algorithm. The simulation parameters are

specified in Table 1. The channel is assumed to have only propa-

gation path-loss, i.e. Gℓk = (dℓk)
−α, where α is the path-loss ex-

ponent. Figure 2 illustrates the 4-node and 5-node wireless network

topologies used for simulation. The nodes are denoted by filled cir-

cles and the solid lines denote the bi-directional link between node-

pairs.

Table 1. Simulation Parameters

Symbol Description Value

N Number of nodes 4 / 5

P Max. power per link 5 W

V Noise variance 10−12 W

Gsg Spreading / Beam-forming gain 128

T SINR threshold for decoding 30 dB

ε Tolerance parameter 0.1
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Fig. 2. Illustration of the Network Topology

Figures 3-4 highlight the queue-length stabilization properties

for interference cancellation policies. In Figure 3, the simulation

has been done for N = 4, and input traffic of 10 packets per slot.

During the first 25 slots, the network is controlled by BPPC-noIC,

while for the next 25 slots BPPC-IC is employed. It can be seen that

the network is unstable under BPPC-noIC, resulting in the backlogs

increasing with time. However, the BPPC-IC algorithm quickly sta-

bilizes the network, bringing all backlogs down to stable territory. It

can be seen that the average throughput increases to 10 which is the

arrival rate, once BPPC-IC takes over.

Figure 4 compares the stabilization properties of BPPC-IC and

BPPC-RIC policies. Here the simulation has been done for N = 5
and input traffic = 11 packets per slot. During the first 50 slots, the

network evolves under control of BPPC-noIC, followed by BPPC-IC

in one case and BPPC-RIC in the other, for the next 25 time slots.

From the plots, it is clear that both BPPC-IC and BPPC-RIC stabilize

the network backlogs. But the steady state average source backlog

for BPPC-RIC is higher than for BPPC-IC, which means that the

network is more congested under BPPC-RIC than under BPPC-IC.

Furthermore, it can also be seen from Figure 4 that BPPC-IC stabi-

lizes the network much more quickly that BPPC-RIC.

Table 2. Maximum Stable Throughput comparison

IC policy 4-node network 5-node network

BPPC-noIC 7 8

BPPC-RIC 9 12

BPPC-IC 10 14

In Table 2, the maximum stable throughput for the different al-

gorithms in a 4-node and 5-node wireless network are shown. It

should be noted that there is a significant increase in the maximum

stable throughput (up to 42.8% for 4-node and 75% for 5- node case)

when interference cancellation is employed at the receiver of each
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link. From these results, it can be inferred that interference cancel-

lation enables the network to handle significantly more traffic.

Figure 5 compares the source-node backlog of BPPC-IC with

that of BPPC-RIC for a 5-node network with input traffic of 14 pack-

ets per slot. From table 2, it can be seen that the input traffic is greater

than the maximum stable throughput for BPPC-RIC. Therefore, the

source backlog increases with time for BPPC-RIC. BPPC-IC, on the

other hand, manages to contain the source backlog in this case. This

plot corroborates the data provided in table 2, underscoring that the

proposed BPPC-IC policy enables the network to handle consider-

ably higher input traffic than BPPC-noIC or even BPPC-RIC.

In addition to higher throughput, BPPC-IC also features lower

average delay relative to BPPC-RIC and BPPC-noIC. This is a con-

sequence of Little’s theorem applied to the whole network, taking

into account that BPPC-IC has the lowest backlogs among the three

algorithms considered. This and other issues will be explored in the

journal version.
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Fig. 3. Network stability and throughput performance of BPPC-

noIC and BPPC-IC policies in a 4-node network for λ = 10
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Fig. 4. Comparison of source node backlog stability of BPPC-IC

and BPPC-RIC policies in a wireless multi-hop network with 5

nodes for Input traffic = 11
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Fig. 5. Comparison of source backlogs for BPPC-IC and BPPC-

RIC policies for 5-node wireless network with input traffic 14

6. CONCLUSION

We have considered joint back-pressure power control and interfer-

ence cancellation for throughput maximization in wireless multi-hop

networks. The problem is NP-hard, but we developed a formulation

leading to a suitable convex approximation. The main conclusion is

that joint optimization of power control and interference cancella-

tion pays off: it offers a significant increase in the maximum stable

throughput, in addition to lowering transport delay by better control-

ling the queueing delays in the network. The problem formulation

and its approximation appears to be useful in a number of related

contexts that are currently under investigation.
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