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Instituto de Robótica y Tecnologı́as de la Información & las Comunicaciones (IRTIC)

Universitat de València, 46980, Paterna (Valencia), SPAIN

Email: {Gustavo.Hernandez, Cesar.Asensio, Baltasar.Beferull}@uv.es

ABSTRACT

This work shows how to obtain distributively important

statistical measures such as the semivariogram and the covar-

iogram in a Wireless Sensor Network. These statistics de-

scribe the spatial dependence of the sensed area and allow

making inferences about unknown field data. In practice,

these are complex measures that require global knowledge

such as the distance between every pair of nodes, which is

not available in a distributed scenario. Then, motivated by

the distributed nature of a Wireless Sensor Network and the

requirement of making estimations in many real applications,

we propose a distributed method to obtain an approximation

of these measures, based only on the local samples of the

nodes. Our method only requires knowing, at each node, the

geographic position of its neighbors. Additionally, we show

that introducing random movements of the nodes, the quality

of the results can be improved. Simulation results are pre-

sented to evaluate the performance of our algorithm.

Index Terms— Statistical tools, Distributed estimations,

Wireless Sensor Networks.

1. INTRODUCTION

In Wireless Sensor Networks (WSNs), spatial interpolation

techniques such as splines and Kriging [1][2], have attracted a

great deal of research work because of their relevance in most

of the applications where field reconstruction is required. The

goal pursued by these techniques is to acquire global maps [3]

of the field behavior, based on the available sensor samples.

For example, these techniques are widely used on environ-

mental monitoring [4][2] and spectrum cartography for Cog-

nitive Radios [3].

The aforementioned techniques require some statistical

measures [1][6] to exploit the spatial dependence on the field
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and make inferences about it. The most common statistics

employed for this purpose are: the covariance, the correla-

tion, and the semivariance [7]. These tools describe the spa-

tial dependence of the field as a function of the distance. This

is done by means of extracting important information of simi-

larity among the samples, at the expense of using a great deal

global information such as the distance between every pair of

nodes.

In the literature, there exist several methods that consider

the problem of spatial interpolation in WSN, employing these

tools. For example, in work [4], a method to estimate en-

vironmental parameters is proposed, using a centralized co-

variogram estimation. In [3], a framework to apply spatial

interpolation techniques for spectral cartography in Cognitive

Radios is presented. However, the entire procedure is per-

formed offline and the statistics involved are assumed to be

known. In [12], the process to obtain the semivariogram by

means of performing a quadtree protocol is presented at the

expense of using global knowledge of the topology.

Our contribution is to obtain, at every node, the spatial

similarity of the field through the iterative construction of the

semivariogram and the covariogram. In particular, we pro-

pose a novel distributed algorithm to capture the spatial de-

pendence of the field, which is based on the diffusion of in-

formation within the network. Additionally, we show that the

introduction of randommovements improves the computation

of the statistical measures, increasing the correlation knowl-

edge of the field at every node. However, some lack of infor-

mation, at certain distances, can arise, reducing the quality of

the results as a consequence. In order to alleviate this prob-

lem, the nodes can perform a linear regression of the unknown

information.

The remainder of this work is structured as follows: the

problem is formulated in Section 2. In Section 3, our dis-

tributed proposal is explained in detail. The numerical results

of this work are summarized in Section 4. Finally, conclu-

sions and future work are given in Section 5.
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2. PROBLEM FORMULATION

A WSN can be modeled as a graph G = (V,E) composed
by a set V of N nodes and a set E of links. A link eij ∈ E

is established between nodes i and j if their euclidean dis-

tance, denoted by dij , is lesser or equal than certain threshold

distance R. We define h ≡ {h1,h2, . . . ,hℓ} as a collection
of classes of distance. The size of each class of distance

is dmax
ℓ
, where dmax denotes the maximum distance between

two points in the deployment area. Thus, h1 contains the

distances in (0, dmax
ℓ
], h2 contains the distances in (

dmax
ℓ
, 2dmax

ℓ
]

and so on. Based on these classes of distance and the data

gathered by each node i, denoted by zi, we propose a dis-

tributed method to obtain at every node the semivariogram

and the covariogram, which are re-called here for the shake

of completeness.

The semivariogram γ̂(hs): This statistic describes how
the data measurements vary with the distance. This is ex-

pressed as follows:

2γ̂(hs) ≡
1

|N (hs)|

∑

N (hs)

(zi − zj)
2; ∀s = 1, 2 . . . , ℓ (1)

where

N (hs) ≡

{

(i, j) |
(s− 1)

ℓ
dmax ≤ dij ≤

s

ℓ
dmax; ∀i, j ∈ V

}

is the set containing the pairs of nodes i and j such that the

distance between them dij is included in hs. Fig. 1 shows an

example of N (h1) and N (h2) from the point of view of four

different nodes.

The Covariogram Ĉ(hs): This estimator describes how
the correlation between the samples decreases with the dis-

tance. This is expressed as follows:

Ĉ(hs) =
1

|N (hs)|

∑

N (hs)

(zi − µi)(zj − µj)
T (2)

where µi and µj correspond to the estimated mean in the

nodes i and j respectively.

Notice that the mean of the field is not necessary to

compute the semivariogram, conversely to the covariogram,

where the mean of the field must be estimated. For this

purpose, we use the geographic gossip algorithm [8]. This

algorithm distributively computes the global mean at every

node by exchanging their current estimations. Therefore, for

the computation of the covariogram, the nodes send both their

field measurement and their current estimation of the mean.

dmax

h1

h1h2

Fig. 1. Example of a unit square area where the nodes have

been randomly placed. We show N (h1) and N (h2) for the
nodes colored in red and blue. N (h1) corresponds to the

nodes inside the circular white areas and N (h2) corresponds
to the nodes within the shaded circular areas.

In order to calculate distributively the aforementioned

statistic measures, we make the following assumptions:

• Nodes know their own geographical position and the

one of their local neighbors.

• We assume that the nodes are randomly and uniformly

deployed on the unit square area.

• Additionally, the quality of estimation can be improved

if node mobility is introduced. If mobility is allowed,

the new positions of the nodes are independently se-

lected, as in [11].

Lemma 1: If the number ℓ of classes of distance satisfies

0 < ℓ ≤
√

πN
logN

, then, with high probability, there is at least

one node in each class of distance.

Proof : Assuming a unit square area, it has been shown

in [10] that a sub-area of size 2 logN
N

ensures with high prob-

ability, at least, one node inside it. Since the minimum area

π
(

dmax
ℓ

)2
corresponds to the first class of distance, the param-

eter ℓ must be at most
√

πN
logN

.

Remark: Note that the nodes located around the corners

cover smaller areas than the rest of the nodes, (see Fig. 1).

However, these nodes, as opposite to the ones around the cen-

ter, are able to obtain information of the larger classes of dis-

tance. Both problems can be solved by introducing random

movement of the nodes and simple linear regressions, as we

explain in Section 3.
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3. DISTRIBUTED APPROACH

The intuition of our method is to exploit the spatial informa-

tion in a distributed manner, by allowing the continuous dif-

fusion of messages, similar to [8]. This provides essential

information to the nodes for the computation of the statistical

measures presented in Section 2. Optionally, we introduce

the random movement of the nodes in order to improve the

quality of the estimations.

In each iteration of our algorithm, the network performs

one of the following two operations: 1) a randomly selected

node i sends a message containing its own geographic loca-

tion and its sensed data to some random coordinates or 2) the

node moves to some random point in the area, and samples the

field again. We denote by 0 ≤ α ≤ 1 the parameter that indi-
cates the probability of movement. Algorithm 1 describes

how the nodes choose between one of the two previous oper-

ations with probability α, and Algorithm 2 shows how the

forwarding process is performed.

Algorithm 1 Origin node i

Require: xi, yi, zi, µi, α

xd= rand(0:1), yd=rand(0:1)

p = rand(0:1)

if p > α then

message = [xi, yi, xd, yd, zi, µi]
choose neighbor j closest to (xd, yd)
send message to neighbor j

else

move to (xd, yd)
xi = xd; yi = yd
zi = senses a new value

end if

Algorithm 2 Forwarding node j

Require: [xi, yi, xd, yd, zi, µi], xj , yj , zj , µj

dij = obtain distance to origin node i

hs = class of distance corresponding to dij

[γ̂(hs), Ĉ(hs)] = refine the estimation
if exists some neighbor closer to destination (xd, yd) then
choose the neighbor l closest to (xd, yd)
send message to neighbor l

else

ACK message = [xj , yj , xi, yi, zj , µj ]

µj =
µi+µj

2
send ACK message towards (xi, yi)

end if

The first operation implies that a message is sent from the

source node to the one hop neighbor that is closest to the ran-

dom position (xd, yd). This operation is iteratively repeated
along the route until the current node has no one hop neighbor
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Fig. 2. Example of four iterations of our algorithm centered

on the central red node. During these iterations, three multi-

hop transmissions (k = 1, 2, 4) and one random movement

(k = 3) have been performed. The red node is the origin node,
some white nodes acts as forwarding nodes and the green ones

are the destination nodes of the corresponding transmission.

with shorter distance to (xd, yd) than its own. Every interme-
diate node is able to update its current statistic value with the

sample and distance of the source node. In other words, every

node in the route computes the distance to the source node by

obtaining the coordinates of the received packet and it assigns

the obtained value to the appropriate class of distance. Notice

that nodes do not require global knowledge of the network

topology because the messages are sent to random locations

within the deployment area.

The second operation implies that a node moves to a new

location in the unit square area, it obtains a new measure from

the environment, substitutes the previous one and update its

mean value. As a result, several values for each class of dis-

tance are possibly created in the current node. Additionally,

a value in one class of distance is potentially created in the

rest of the N − 1 nodes. These two operations allow every

node in the network to iteratively obtain useful information to

construct the semivariogram and the covariogram.

Finally, in order to obtain the covariogram, the average

of the samples is required. For this aim, the closest node to

destination, use the incoming information to perform an iter-

ation of the geographic gossip algorithm. This allows them to

distributively obtain an approximation of the field data mean.

A gossip algorithm requires symmetric communication links

in order to assure convergence to the data mean. Likewise,

the destination nodes use the origin coordinates to send back

the message to the source. In the case of introducing random
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movements in the network, a node that is waiting for an ACK

message is not allowed to move until the message is success-

fully received.

An example of these operations is represented in Fig. 2.

In this example, four iterations are shown from the point of

view of node i. In the first and second iterations, the node i

sends a message to some random locations (xd, yd). By for-
warding the message, the nodes in the route (the white nodes

in the example shown in Fig. 2) are able to refine the semi-

variance with the origin node i, at the corresponding class of

distance. In the third iteration, node i moves to other new

generated coordinates within the deployment area and senses

a new value. Finally, in the fourth iteration, the node i sends

a new message to a new location allowing the acquisition of

new information at another node.

4. NUMERICAL RESULTS

In our simulations, the nodes are randomly deployed over the

unit square area with a range of communication of R = 0.2
for each of them. The results are obtained by averaging over

100 different random networks of size N = 100. In order to
evaluate the performance of our distributed algorithm, we cre-

ate a correlated Gaussian field following the model presented

in [13]. Finally, we scale the number of classes of distances ℓ

as
√

πN
logN

to ensure that there exist at least one node at each

lag of class of distance.

In Fig. 3, we can observe the results obtained for the semi-

variogram and the covariogram, respectively, as a function

of the classes of distance. For the semivariogram Fig. 3(a),

when the network nodes are not allowed to move (α = 0),
the parameter that governs the performance is the number of

iterations. The higher the number of iterations is, the better

the quality of estimation. Furthermore, we introduce some

random movement in the network nodes by slightly varying

the parameter α. The results obtained when movements are

considered, outperforms the ones given by a static network.

This occurs even in the case of performing a small number of

iterations, allowing the semivariogram estimation to converge

more accurately to the centralized one.

Moreover, in the covariogram case Fig. 3(b), for the static

network, improvement is obtained by minimizing the error

of the measure with respect to the centralized estimation.

Likewise to semivariogram case, the introduction of random

movements improves the performance with respect to the

centralized covariogram. However, effectiveness provided

by the random movements is not as important as the one

obtained by the semivariogram estimation.

Finally, Fig. 3(c) shows how the mean square error de-

creases with respect the centralized algorithm as a function of

the number of performed iterations. This evolution is shown

for different values of the parameter α.
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Fig. 3. (a) Semivariogram and (b) covariogram as a function

of the classes of distance for different number of iterations.

Furthermore, random movements are added for several values

of α. All results are compared with the statistic obtained in a

centralized manner and the curves of the corresponding mean

square error are shown in (c).
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5. CONCLUSIONS

In this paper, we have proposed how to face with the problem

of semivariogram and covariogram estimation in a distributed

manner. We presented an algorithm that allows each node

in the network, to exchange messages and execute interpola-

tions to iteratively build the desired tools. We show that the

algorithm performance can be improved by adding random

movements in a small subset of nodes, according to a pre-

defined factor. These changes on the topology increase the

available knowledge of the field, giving as a result that the

number of required iterations to obtain a good estimation is

reduced. As future work, we will focus on extend the algo-

rithm development to make it adaptive for estimation of the

statistics in nonstationary fields.
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