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ABSTRACT Overlap detection is an unsolved problem and the focusén thi

This paper presents recent advances in the application BpPer-
convolutive non-nega’[ive sparse Coding (CNSC) to the prob_ There is little prior work in the open literature. Boakye et
lem of overlap detection in the context of conference meetal- [3, 4] investigated the use of various different feasuire
ings and speaker diarization. CNSC is used to project a mixed hidden Markov model (HMM) framework for overlap de-
speaker signal onto separate speaker bases and henceto ddction together with a post-processing step for attréuti
intervals of Competing Speech_ We present new energy rati-Bhey show Significant improvements in the diarization error
and total energy features which give significantimprovetmen rate (DER) on a subset of the AMI corpus [5]. Huijbregts
over our previous work. The system is assessed using a subt al- [6] report a detection approach which uses a model of
set of the AMI meeting corpus. We report results which areoverlapping speech, trained on data localised around speak
comparable to the state of the art which support the pofentidurns. They show minor improvements in the DER on a more
of a new approach to overlap detection. An analysis of syschallenging NIST RT data.
tem performance highlights the importance of further work t Our own approach to overlap detection [7] is based on
addresses weaknesses in detecting particularly shoresggm convolutive, non-negative matrix factorisation (CNMF) [8
of overlapping speech. with sparse coding constraints. The resulting convolutive
non-negative sparse coding (CNSC) approach combines the
advantages of mixed pattern decomposition due to non-
negative constraints and powerful representation andenois
robustness due to sparse coding. The acoustic signal is pro-
1. INTRODUCTION jected onto a set of speaker bases and the resulting bage acti

ions are used to detect overlapping speech. We achieved re-

. . t
Overlapping speech is known 1o degrade the performance %ﬁlts comparable to the state-of-the-art systems in bath-ov
speaker diarization systems [1]. Unfortuately its occuoesis lap detection and attribution on RT corpora
typical in uncontrolled, spontaneous scenarios such astha '

conference meetings which have been the focus of the NIST Recent work by Zelenak et al. [9, 10] reports an HMM
Rich Transcription (RT) evaluations since 2604Accord- system using spatial features/localisation and proscehe f

ingly there is an increasing effort within the community to tures in addition to conventional acoustic features. Siicamt

develop new algorithms to detect and appropriately hand/inprovements in precision and recall are reported. Our par-

overlapping speech. New algorithms are needed, first to gdicular interest, however, involves a single distant mptrone

tect segments of overlap so that they can be removed fromhgre no I_ocalisation features are available. The re'mri(t_b
data used in clustering and modelling and, second so th&Single microphone makes the problem more challenging but

segments of overlapping speech can be attributed to relevarP!utions more versatile.
speakers. Even if there is contradictory evidence thatehe r ~ The performance of each approach described above is at
moval of overlapping speech from data used in clustering anest modest and further work is needed to improve overlap
modelling gives any significant reduction in the diarizatio detection performance before attention can be turned tbwar
error rate (DER), detection is nonetheless a pre-cursorto athe development of effective attribution algorithms. Therkv
tribution which can significantly improve performance [R,3 presented in this paper aims to identify the weaknessesrin ou
, ~own overlap detection system as a guide to future work. Since

R . g’ L contains a higher degree of spontaneous speech and more
BMBE. frequent intervals of overlap this work was carried out gsin

Ihttp://www. itl.nist.gov/iad/nmig/tests/rt/ AMI data. The contributions are two-fold. First, we report a

Index Terms— speech overlap detection, convolutive
non-negative sparse coding, speaker diarization
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new measure to detect ovelapping segments using CNSC ac-
tivations. Second, we report an analysis of overlap detecti
performance which highlights weaknesses in detectinggpart D H

ularly short, but significant segments of overlapping sheec Wy = W0 . p—=T )
The paper is organised as follows. In Section 2 we de- D e

scribe the CNSC algorithm which is the basis of our approach wg D

to overlap detection described in Section 3. Experimergs ar H(p) = HO e ®)

reported in Section 4 with a detailed analysis of system per- wl' D +AU

formance. Our conclusions and ideas for further work are =

given in Section 5. H = B H(p), (6)

p=0

whereU is anR x N unit matrix,® is the Hadamard product
2. CONVOLUTIVE NON-NEGATIVE and where the division of matrices is performed elemenewis
SPARSE CODING After each update ofl/, its columns are normalised to unit
vectors. This is an essential step in sparse coding since it
Non-negative sparse coding (NSC) [11,12] is an approach tensures thall’ does not grow in an uncontrolled manner and
represent non-negative, multi-variate data as a lineabtom encourages sparse representation.
nation of lower rank bases. Only additive combinations are
allowed in the representation due to the imposition of non- 3. CNSC-BASED OVERLAP DETECTION
negative constraints.
With NSC, a non-negative matrik < Rffo is repre-  We show here how the CNSC algorithm can be readily ap-
sented as: plied to detect overlapping speech. CNSC bases are learnt
for individual speakers such that an interval of overlagpin
D~WH (1) oo ;
speech can be decomposed into its underlying speaker com-

onents, thereby providing a natural solution to overlap de
where,W € Ry, , and H € Rz, form the bases and P v P g op

L ; tection. We first describe the CNSC-based decomposition of
base activations respectively. These are learnt suchhbat t

) - . speech signals and then introduce a new frame-level approac
regularised least square error between the original mautrix to overlap detection.

the recomposition/p) is minimized:
3.1. Base learning and decomposition

(W,H) = argmin |D — WH|% + AZ Hiy, (2 CNSC base$l are learnt for each speaker in an audio doc-
W.H ument using spectral magnitude features extracted from seg

ments of pure (non-overlapping) speech. The base patterns

where, \ is a regularization parameter which controls thefor each speaker are then concatenated together to create a

sparsity of the resulting representation. global basigV ¢ that spans the spectral patterns of all speak-

This formulation, however, fails to capture the correlatio ers. Sp?c”a' _magnitude f(_aatures across the whole audio doc

between adjacent frames in the data mabithat is inherent ument, including overlapping segments, are then decoripose

at the frame level according to Eq. 2 withi© kept fixed and

in speech signals. A convolutive variant, referred to as con ) 2 Lo o
volutive NSC (CNSC) [8] addresses this issue. The CNS(?nlyH being updated to minimise the optimisation criterion.
The activations inH for any given frame and any given

decomposition takes the form: 2
P speaker therefore serve as an indication of that speaker’s a

ij

p1 tivity. While the activationsd and corresponding basi$
D~ W, ’}j (3) can be used to reconstruct or separate each speaker’s-contri
=0 ? bution to overlapping segments, we use the activatidrdi-

rectly to detect each speaker’s activity and hence segrénts

. . overlapping speech.
whereP is the convolution range. The operat8r$ and”* pping sp

are column shift operators which shiftolumns of the matrix
to the right and left respectively.

The learning of bases and activations together accordingince the baseld” are normalised, the sum of the activations
to Eqg. 2 is a non-convex optimization problem and is solvedor any given speaker is strongly correlated to the signal en
by iteratively updating? and H until convergence using the ergy from that particular speaker and therefore serves as an
following update rules [13]: indicator of that speaker’s activity during any given frame

3.2. Activation energy

341



6 nearer to unity while for non-overlapping segments theorati
CNSC activations | —— Speaker 1 should be nearer to zero. Since overlapping speech segments
—_ ~Speaker 2| typically have more energy (they comprise speech from mul-
tiple speakers) we also estimate the total enéf@y by sum-

ming Eq. 7 across all speakers and filter out frames with low
total energy. All frames with an energy ratioz; and to-

tal energyET); greater than empirically optimised thresholds
dpr anddpr are deemed to contain overlapping speech.

In our previous work [7], we had used variance of speaker
AR 1 activation enegy differences in a frame as a measure for de-
ERNRY Y tecting overlaps. However the energy ratio measure gives

— much better results when used in conjunction with the total
energy threshold introduced in this work.

2 3
Time (s) 4. EXPERIMENTS

Fig. 1: An illustration of the correlation between ground-truth We report here an assessment of our new overlap detection
speaker activity (bottom) and CNSC activation energigs)(to system using a subset of the AMI meeting corpus [5].
for two speakers in a conversation containing an interval of

overlapping speech. 4.1. Oracle segmentation

The energy for speakerduring framej is estimated accord- N @ practical speaker diarization scenario there is nolsgea

ing to: specific training data other than that contained within tire a
dio recording itself. Consequently, the diarization syste
Ej(s)=Y_ Hy (7)  hypothesis must itself be used to estimate regions of clean
i€ls speech for each speaker. Due to diarization errors, thecspe
where I, represents the speaker-specific rowstn or the ~ Materialis not entirely pure, butis the only data availatité
activations for speake: which to learn speaker-specific base matrices for CNSC over-

Figure 1 (top) illustrates the CNSC activation energy'ap detection. Any derived results are therefore depenalent
against time for two speakers during a short interval from athe performance on the underlying speaker diarizatioresyst
example meeting recording where the speaker energy is caAhd thus the extraction of generalised results is troubleso
culated according to Eq. 7. Ground-truth reference speaker N such scenarios it is typical to use oracle references to
activities are plotted below using the same colour profite fomarginalise the impact of systems elements that are not un-
corresponding speakers. The latter are plotted on differeler direct observation and thus to minimise their influence
scales solely for clarity. It is seen that the CNSC activatio 0N observed results. This approach is adopted here; we use
energies have a clear potential as an indicator of speaker d&e reference transcription to identify intervals of pyseech
tivity and as can be seen from the figure, both the speakef8" €ach speaker. Accordingly, results presented in thiepa

have high activation energy in the overlapping segment beare independent of errors in an automatically derived sgreak
tween 2 and 3 seconds. segmentation or diarization output and thus the assesdoient

cuses on CNSC alone. While such an approach does not nec-
essarily give a reliable estimate of performance under-prac
tical conditions, we note that our previous work [7] showed
Speaker activation energies calculated as per Eq. 7 aliétle difference in overlap detection performance usieg r
smoothed with a moving average filter and used to implemer@rence segmentations to those obtained with a real speaker
a frame-based overlap detector. It is based on an energy ra@liarization system.

ER for framej estimated as follows:

E;(52)
E;(51)

3.3. Overlap detection

4.2. CNSC optimisation

ER; = (8)

We used a subset of six meeting recordings for development
and the same ten files for evaluation as used in previous work
wheres; denotes the speaker with ti8 highest energy. The by other authors [3]. In all cases we used only the single-
energy ratio reflects the difference in activation energytie  channel far-field microphone recordings. The list of used
two speakers who are deemed to be most active in the givaneetings is displayed in Table 1. Both development and eval-
frame. For overlapping segments we expect the ratio to beation sets contain approximately 20% overlapped speech.
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Development set

TS3009d 1IS1009d  EN2009c ES2014c —— precision vs. recall
IN1016 IB4002 0-9r = = = Our previous work [7]
osh > -+ Our system operating points
Test set A /\ HMM system operating points [3]

EN2003a EN2009b ES2008a ES2015d orr
IN1008  IN1012  1S1002c  1S1003b 06l
IS1008b  TS3009¢c T
8 0.5F
2
Table 1: Meetings from the AMI evaluation dataset used for o4r
development and testing 03
0.2
The CNSC algorithm was optimised on a small, artifi- oaf
cal 2-speaker test set where overlapping speech was man ‘ ‘ ‘ ‘ ‘ ‘ ) ‘
ally created and controlled in order to better understassd sy o e eion

tem behaviour and the influence of different parameterisa-

tions. Parameterisations reported here were subsequently Fig. 2. Overlap detection performance in terms of precision
optimised on the AMI development data and thus different g recall on the evaluation dataset.

to those reported previously [7]. The algorithm is applied

to magnitude spectra computed on 40 ms windows (cf. 20 ms

previously) with a window shift of 20 ms. CNSC speaker ac-
tiviations are calculated with speaker bases of dize- 35
(c.f. 50 previously), a convolutional range 6f = 4, and a , ;
sparseness parameter)of= 0.05. The use of larger window Boakye etal. [3] reported experiments with the same eval-
sizes captures more dicriminative speaker features where4alion set and report precision/recall values of 0.55/@rd

the use of smaller bases leads to more effective modeling arfi®4/0-24. Our system achieves similar values of 0.55/0.31
avoids overfitting. and 0.64/0.23. The two sets of results are also illustrated

in Figure 2 with red triangles and blue crosses respectively
Our system achieves comparable performance without a du-
ration model that is implicitly inherent in the HMM based

Overlap detection performance is assessed using precisi&‘?proa‘:hes'

and recall statistics calculated at the frame level. Imgrov  In order to better understand the performance and weak-
ments in speaker diarization require overlap detectiof wit Ness of our new overlap detection system we analyzed per-
high precision, whereas recall is usually of lower impor-formance as a function of overlap segment duration. For this
tance [3]. However, given that overlap detection can be apvork we arbitrarily chose the first operating point with grec
plied in different processing steps of a typical speakeiiziia ~ sion/recall of 0.55/0.31. Figure 3 shows four histograntgplo
tion system (namely overlap exclusion during clustering an for the test set which illustrate overlap detection perfance
overlap attribution during segmentation), different giery ~ in terms of detected and missed overlap (top right and bot-
points with different precision and recall values may beesen tom left) and recall (bottom right). For comparison referen
ficial. Therefore, in addition to precise figures, we alsossho overlap histogramis also presented (top left). The distitin

the dynamic influence of the energy threshélg, on the Of overlap segment durations show the total contributian (i
trade-off between precision and recall performance. Aéigh seconds) to the corpus for each bin (not the number of seg-
threshold will identify less overlap yielding lower recaiit ~ments with the respective length, as would be the case in a

profile) [7]. The new energy ratio and total energy features
thus give a marked improvement in system performance.

4.3. Metrics and assessment

higher precision. conventional histogram).
The plots show that the largest contribution to overlap
4.4. Results comes from shorter segments with durations betvie®and

1.5 seconds. However, there are a suprising number of longer
The energy ratio threshold was tuned on the development severlap segments with durations in excesd seconds. The
and set tdgr = 0.5 across all audio recordings whereas wemissed overlap and recall histograms shows that short seg-
observed significantly better results whggy is set dynam- ments, which occur most frequently, are the least well de-
ically for each audio recording and according to a fraction tected. Furthermore, the number of overlapping segmeats th
of the mean energy over the entire recording. Figure 2 showsave a duration greater than the standard 0.25-second colla
overlap detection performance in terms of precision andlrec used in the standard diarization error rate (DER) shows that
as a function of,. (solid blue profile) and shows considerably a significant penality will be incurred if segments of betwee
better performance than our previous system (dashed bla€k25 and 2 seconds in duration are not detected reliably. Fu-
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short and especially long duration. In addition, we experim
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Fig. 3: Weighted length histograms for reference overlap seg-
ments, detected overlap, missed overlap and recall.

(3]

ture work should therefore focus on improving detection of
shorter segments and is likely to prove a significant chgien [4]

5. CONCLUSIONS

This paper reports our recent advances and system enhancL:s—]
ments in applying convolutive non-negative sparse coding
(CNSC) to the detection of overlapping speech in the con-
text of conference meetings and speaker diarization. CNSﬁG]
can be used to separate a potentially overlapping speech si
nal into single-speaker signals. We show how the resulting
CNSC base activations can be applied to detect overlappingh]
speech segments.

The new CNSC approach gives overlap detection results
which are comparable to a state-of-the-art HMM overlap de-
tection approach, when evaluated on the AMI meeting cor- 8]
pus. Compared to an HMM approach, we use a rather simplé
classifier which is not dependent on large amounts of trginin
data. Optimized parameterisations and new energy ratio and
total energy thresholds give significantly better perfanoea [9]
than our previous work and supports the potential for CNSC-
based overlap detection. A new analysis of overlap detectio
performance highlights the need for continued work to im-[lo]
prove overlap detection particularly for shorter segmerfits
between 0.25 and 2 seconds in duration. A large part of these
short overlap segments are backchannel utterances, winere o
speaker speaks in the middle of a longer utterance of another.
speaker. However, very often it is not the case that there is
a real acoustic overlap between these two speakers. Ther(i-2
fore, these segments can not be detected by overlap deltecti% ]
systems which rely only acoustic features.

Our current work aims to integrate CNSC activations into
an HMM overlap detection framework to exploit the benefit of(13]
duration modelling. This work is expected to improve overla
detection performance for overlapping segments of eslhecia
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I cctected overiap with the inclusion of several different energy-relateddees,
since the introduction of the total energy threshold gawhsu
a big improvement in system performance. Future work in-
® cludes the full integration of overlap detection into a reagu
speaker diarization framework. In additionto continuedkvo

° "’ segment length in seconds to develop detection performance this will require new work
to optimise overlap attribution algorithms.
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