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ABSTRACT 

 

This
1
paper concerns with the identifiability of an unknown 

deterministic vector in the presence of random nuisance 

parameters. In these cases, the classical definition of 

identifiability, which requires calculation of the Fisher 

Information Matrix (FIM) and of its rank, is often difficult 

or impossible to be implemented. Instead, the Modified FIM 

(MFIM) can be usually computed. We generalize the main 

results on parameter identifiability to take the presence of 

random nuisance parameters into account. We provide an 

alternative definition of identifiability that can be always 

applied also in the presence of nuisance parameters and we 

investigate the relationships between the classical and the 

new identifiability conditions. Finally, the new definition of 

identifiability is applied to a common estimation problem in 

netted radar systems: the relative grid-locking problem. 

 

Index Terms— Identifiability, nuisance parameters, 

Kullback-Leibler divergence, Modified FIM. 
 

1. INTRODUCTION 
 

The identifiability problem concerns with the ability of 

drawing inferences from observed data to an underlying 

theoretical structure [1], [2], [3]. This is equivalent to saying 

that different structures may generate different probability 

distributions of the observable data in order to make the 

structures “observable”. Our attention is focused on the 

parametric models [4], i.e. such models in which every 

structure can be represented by a vector in m
� . The 

classical definition of identifiability requires the calculation 

of the rank of the Fisher Information Matrix (FIM) [2]: if 

the FIM is a full rank matrix, then the structure (or, 

equivalently its corresponding parameter vector) is 

identifiable. However, in many practical applications, the 
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data model is affected by additional random parameters 

whose estimation is not strictly required, the so-called 

nuisance parameters [5]. In these cases, the evaluation of the 

FIM is often difficult or impossible to be evaluated in closed 

form. To overcome this analytical problem, the modified 

FIM (MFIM) has been introduced [6], [7]. The aim of this 

paper is to generalize the classical identifiability condition 

to take the presence of random nuisance parameters into 

account. In particular, a new definition of identifiability, 

based on the rank of the MFIM, is provided. This alternative 

definition is weaker than the classical one in the sense that 

some structures might be classified as identifiable when they 

are not according to the classical condition. On the other 

hand, if a structure is not identifiable under the proposed 

new condition, then it is not identifiable under the classical 

condition as well. We show the relationships between the 

new identifiability condition and the MFIM. Finally, we 

apply our results to the relative grid-locking problem which 

shows up in netted radar systems (see [8],[9] and references 

therein).  

The rest of the paper is organized as follows: in Sect. 2, 

we provide a description of the identifiability problem in its 

classical formulation. In Sect. 3, we generalize previous 

results to take into account the presence of random nuisance 

parameters. A new definition of identifiability is provided 

and its relationship with the classical one investigated. 

Finally, in Sect. 4, we describe an application to the relative 

grid-locking problem. Conclusions are collected in Sect. 5. 
 

2. GENERAL FORMULATION OF THE 

IDENTIFICABILITY PROBLEM 
 

2.1. Some preliminary definition 
 

Let n∈x �  be a n-dimensional random vector, 

representing the outcome of some random experiment, 

whose probability density function (pdf) is known to belong 

to a family F . A structure T is a set of hypotheses which 

implies a unique pdf in F  for x. Such pdf is indicated with 
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( ; )p T ∈x F  [1], [3]. The set of all the a priori possible 

structures is called a model and is denoted by M . By 

definition, there exist a unique pdf associated with each 

structure in M .  

Definition 1: Two structures T0 and T1 in M  are said to 

be observationally equivalent if they imply the same pdf for 

the observable random vector x. The structure T0 is 

otherwise said to be identifiable if there is no other structure 

in M  which is observationally equivalent. 

We assume that the pdf of the random vector x has a 

parametric representation, i.e. we assume that every 

structure T is described by an m-dimensional vector Φ and 

that the model is described by a open subset 
mΩ ⊆ � . It is 

possible to associate with each Φ in Ω a continuous pdf 

( ; )p ∈x Φ F  which is perfectly known except for the 

values of the parameter vector Φ. 

Definition 2: Two parameter vectors Φ0 and Φ1 (relative to 

two structures T0 and T1) are said to be observationally 

equivalent if p(x;Φ0)=p(x;Φ1) for all 
n∈x � . Φ0 is 

otherwise said to be identifiable if there is no other Φ in Ω 

which is observationally equivalent. 

Since the set of the structures is an open subset of m
�  then 

it is possible to endow it with the same topological structure 

of m
� . This allows us to consider the concept of local 

identifiability: 

Definition 3: A parameter vector Φ0 is said to be locally 

identifiable if there exists an open neighborhood of Φ0 

containing no other Φ in Ω which is observationally 

equivalent. 

To highlight the difference between the Definitions 2 and 3, 

in the following we indicate as global the identifiability in 

Definition 2 and as local the identifiability in Definition 3. 

In the following, we assume satisfied some regularity 

conditions on p(x;Φ0) [1]. 

 

2.2. A general identifiability criterion 

 

In [2], a general criterion, based on the Kullback-Liebler 

(KL) divergence, for the identifiability of parameter vectors 

is proposed. Here we report only the main facts. All the 

proofs can be found in [2]. First of all, we recall the 

definition of the KL divergence [10]: 

Definition 4: Let p(x;Φ) and p(x;Φ0) be two parametric 

pdfs for all ∈ΩΦ . The scalar function of the vector 

variable Φ, H(Φ;Φ0), defined as:  

 

( )
( )
( )

( )
( )

( )

0

0

0

0

;
; ln

;

;
ln ;

;

p
H E

p

p
p d

p

  
 
  

= ∫

x

x Φ
Φ Φ

x Φ

x Φ
x Φ x

x Φ

�

 (1) 

is called KL divergence between p(x;Φ) and p(x;Φ0). 

One of the most important theorems on the KL divergence is  

Theorem 1: Let p(x;Φ) and p(x;Φ0) be two parametric pdfs. 

If p(x;Φ)=p(x;Φ0) for all 
n∈x � , then H(Φ;Φ0)=0. 

Otherwise, if H(Φ;Φ0) is finite, H(Φ;Φ0)<0. 

In view of Definitions 2, 3, and 4, the link between the KL 

divergence and the identifiability of a parameter vector is 

given by the following corollary: 

Corollary 1: Let p(x;Φ) and p(x;Φ0) be two parametric 

pdfs for all ∈ΩΦ . Then the parameter vector Φ0 is 

globally identifiable if and only if the equation H(Φ;Φ0)=0 

has, as solution in Ω, only Φ=Φ0. It is locally identifiable if 

and only if Φ=Φ0 is the only solution in some open 

neighborhood of Φ0. 

It can be noted also that the identifiability condition is 

closely related to the maximum of the H(Φ;Φ0). In fact, 

from Theorem 1 it follows that: if the maximum of H(Φ;Φ0) 

is global and attained at Φ=Φ0, then Φ0 is globally 

identifiable, whereas, if there exists an open neighborhood 

of Φ0 with a local maximum in Φ0, then Φ0 is locally 

identifiable. Such consideration suggests another general 

identification criterion that we provide in the following 

corollary (the proof can be found in [2]). 

Corollary 2: Let p(x;Φ) and p(x;Φ0) be two parametric 

pdf's for all ∈ΩΦ . Then, the parameter vector Φ0 is 

locally identifiable if and only if the Hessian matrix H of 

H(Φ;Φ0) evaluated at Φ0, i.e. H(H)(Φ0), is a negative 

definite matrix. Moreover, it can be shown that: 
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where I(Φ0) is the Fisher Information Matrix (FIM).  

Taking into account eq. (2), the following Corollary can be 

finally derived [2]: 

Corollary 3: Let p(x;Φ0) be a parametric pdf. Then the 

parameter vector Φ0 is locally identifiable if and only if the 

Fisher Information Matrix I(Φ0) is a full rank matrix. 
 

3. IDENTIFIABILITY IN PRESENCE OF RANDOM 

NUISANCE PARAMETERS 
 

In practical applications, a wide class of estimation 

problem involves the so-called nuisance parameters, i.e. 

random parameters that affect the data model, whose 

estimation is not strictly required and that are known only 

through their statistical distribution. As before, let n∈x �  

be a n-dimensional random vector, representing the outcome 

of some random experiment, let l∈a �  be the l-dimensional 

random vector of nuisance parameters and let p(x,a;Φ0) be 

the joint pdf of the random vectors x and a parameterized by 

the deterministic vector Φ0 to be estimated. Such pdf is 

assumed perfectly known. In the rest of the paper, we 

assume verified the following: 
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Assumption 1: The pdf of the nuisance parameters p(a) 

does not depend on the parameter vector Φ0. Then, the joint 

pdf p(x,a;Φ0) can be always factorized as p(x,a;Φ0)= 

=p(x|a;Φ0)p(a;Φ0)=p(x|a;Φ0)p(a). 

To apply Theorem 1 and Corollary 3 to this estimation 

problem, we have to evaluate the marginal pdf of the data x: 

 ( ) ( )0 0; , ;p p d= ∫x Φ x a Φ a . (3) 

Unfortunately, in many practical applications, the closed 

form solution of integral in eq. (3) is extremely difficult or 

impossible to calculate and this motivates the search for an 

alternative identifiability criterion. When the marginal pdf 

of the data p(x;Φ0) is unavailable, we can use the joint pdf 

p(x,a;Φ0) to define a new alternative identifiability criterion. 

To this purpose, Definition 2 can be modified as follows: 

Definition 5: Two parameter vectors Φ0 and Φ1 (relative to 

two structures T0 and T1) are said to be observationally 

equivalent if p(x,a;Φ0)=p(x,a;Φ1) for all n∈x �  and for all 
l∈a � . Φ0 is otherwise said to be identifiable if there is no 

other Φ in Ω which is observationally equivalent.  

According to these two definitions, a parameter vector Φ0 is 

non-identifiable if at least another Φ1 exists such that: 

i. Definition 2: p(x;Φ0)=p(x;Φ1) 
n∀ ∈x �  where 

( ; ) ( , ; )i ip p d= ∫x Φ x a Φ a , for i=0,1. 

ii. Definition 5: p(x,a;Φ0)=p(x,a;Φ1) 
n∀ ∈x � , 

l∀ ∈a � . 

Roughly speaking, Definition 5 requires that the parameter 

vector Φ is identifiable for any realization of a. In 

Definition 2, x is observed and a is averaged out in the pdf, 

so we do not require it to be observed (known). In the 

following we derive an operative procedure to verify if, in 

presence of random nuisance parameters, a parameter vector 

Φ0 is identifiable or not under Definitions 5. Moreover, the 

relationship between the two definitions of identifiability is 

investigated. 
 

3.1. Identifiability condition under Definition 5 
 

The aim of this section is to provide a condition to verify 

if the parameter vector Φ0 is identifiable under Definition 5. 

We want to prove that there is no other parameter vector 

∈ ΩΦ , or at least in an open neighborhood of Φ0 (local 

identifiability), such that p(x,a;Φ)=p(x,a;Φ0). First of all, 

we have to generalize the definition of the KL divergence 

under the Definition 5. This can be immediately done by 

defining a scalar function of Φ, HM(Φ;Φ0), as: 
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Now, we have to show that Theorem 1 holds true under 

Definition 5 with the generalized definition of KL 

divergence given in eq. (4). Under Definition 5, Theorem 1 

can be recast as follows: 

Theorem 2: Let p(x,a;Φ) and p(x,a;Φ0) be two parametric 

pdfs where a is the vector of the random nuisance 

parameters. If p(x,a;Φ)=p(x,a;Φ0) for all 
n∈x �  and for all 

l∈a � , then HM(Φ;Φ0)=0. Otherwise, if HM(Φ;Φ0) is finite, 

HM(Φ;Φ0)<0.  

Proof: The Theorem 2 can be easily proved using the Jensen 

inequality:  
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where the equality sign holds if p(x,a;Φ)=p(x,a;Φ0). 

At this point, following the same procedure used in Section 

2.2, it is possible to assert that Φ0 is globally, or at least 

locally, identifiable if and only if it is a global, or at least a 

local, maximum for the KL divergence HM(Φ;Φ0). Then we 

have to show that the gradient of HM(Φ;Φ0), evaluated at 

Φ0, i.e. 
0( )( )

M
H∇ Φ , is equal to zero and that the Hessian 

matrix, also evaluated at Φ0, i.e. [H(HM)](Φ0), is a negative 

definite matrix. As proved in [11], it can be shown that the 

gradient is actually zero and that the Hessian matrix can be 

expressed as: 
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  (6) 

where IM(Φ0) is the so-called Modified Fisher Information 

Matrix (MFIM) [6], [7]. Starting from eq. (6), Corollary 3 

can be generalized to take the random nuisance parameters 

into account. 

Corollary 4: Let p(x,a;Φ0) be a parametric pdf where x is 

the data vector and a is the vector of nuisance parameters 

and let IM(Φ0) be the MFIM. Then, the parameter vector Φ0 

is locally identifiable if and only if IM(Φ0) is a full rank 

matrix. 
 

3.2. Relationship among the identifiability conditions in 

presence of random nuisance parameters 
 

The results obtained in the previous sections can be 

summarized in the following theorem: 
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Theorem 3: Let p(x,a;Φ0) be a parametric pdf where x is 

the data random vector and a is the random vector of the 

nuisance parameters, let 
2 5,

m⊆ �I I  be the sets of the 

parameter vectors globally observationally equivalent under 

Definitions 2 and 5, respectively, and let 
2 5,

m⊆ �O O  be 

two open neighborhoods of Φ0 that contain the parameter 

vectors locally observationally equivalent to Φ0 under 

Definitions 2 and 5, respectively. Then, the following 

relations hold: 

 
5 2⊆I I , (7) 

 
5 2⊆O O . (8) 

The proof can be found in [11]. Theorem 3 states that the 

more restrictive identifiability condition is Definition 2, as 

expected. This means that, if we use Definition 5 to test the 

identifiability of a deterministic parameter vector, it might 

be possible that we classify as identifiable a parameter that it 

is not identifiable according to Definition 2. However, in a 

lot of practical estimation problems that involve random 

nuisance parameters, it is impossible to apply Definition 2 

due to the analytical difficulties in the evaluation of the 

integral in eq. (3). In all these cases, when the classical FIM 

is impossible to obtain but the MFIM it is easy to evaluate, 

we can apply Definition 5. Finally, by means of Theorem 3, 

it is possible to assert that if a parameter vector is not 

identifiable under Definition 5, then it is not identifiable 

under Definition 2 as well.  

 

4. IDENTIFIABILITY IN THE RELATIVE GRID-

LOCKING PROBLEM FOR NETTED RADAR  

 

The aim of this section is to investigate the identifiability 

problem in the relative grid-locking problem [8], [9]. The 

grid-locking problem arises when a set of data coming from 

two or more sensors must be combined. This problem 

involves the coordinate transformation and the reciprocal 

alignment among the various sensors: streams of data from 

different sensors must be converted into a common 

coordinate system (or frame) and aligned before they could 

be used in a tracking or surveillance system. If not 

corrected, the registration errors can seriously degrade the 

global system performance by increasing tracking errors and 

even introducing ghost tracks. A first basic distinction is 

usually made between relative grid-locking and absolute 

grid-locking [9]. Here we focus on the relative grid-locking 

problem, but the application of our findings to the absolute 

grid-locking problem is also straightforward. First of all, we 

give some basic concepts on the grid-locking (or sensor 

registration) problem. One source of registration errors is 

represented by the sensor calibration (or offset) errors, also 

called measurement errors. Although the sensors are usually 

initially calibrated, the calibration may deteriorate over 

time. There are three measurement errors, one for each 

component of the measurement vector, i.e. range, azimuth, 

and elevation. Other kind of registration errors are 

represented by the attitude (or orientation) errors. Attitude 

errors can be caused by biases in the gyros of the inertial 

measurement unit (IMU) of the sensor. There are three 

possible attitude errors, one for each body-fixed rotation 

axis. The last source of registration errors is represented by 

the location (or position) errors caused by bias errors in the 

navigation system associated with the sensor. In the rest of 

the paper, we use the following notations: 

• Attitude biases: we denote by Θt=(χt ψt ξt)
T
, Θm=(χm ψm 

ξm)
T
 and dΘ=(dχ dψ dξ )

T
 the true attitude angles, the 

measured attitude angles and the attitude bias errors. 

• Measurement biases: we denote by vt
k
=(ρt

k
 θt

k
 εt

k
)

T
, 

vm
k
=(ρm

k
 θm

k
 εm

k
)

T
 and dv=(dρ dθ dε)

T
 the true target 

position vector in spherical coordinates, the measured 

target position vector and the measurement bias errors. 

• Location biases: we denote by tt=(tx,t ty,t tz,t)
T
, tm=(tx,m 

ty,m tz,m)
T
 and dt=(dtx dty dtz)

T
 the true and the measured 

relative position and the location bias errors. 

The convention usually adopted is that the biases must be 

added to the measured value to obtain the true value of the 

specific parameter. The bias errors introduced previously 

can be collected in a vector as: 

 ( )
T

x y z
d d d d d d dt dt dtρ θ ε χ ψ ξ

⋅
=Φ (9) 

In the following, we provide an overview of the 

measurement model. More details can be found in [9]. In the 

following, the spherical-to-Cartesian transformation is 

denoted by h(·) and its inverse, i.e. the Cartesian-to-

spherical transformation, by h
-1

(·). Both the measurement 

models of radar #1 and radar #2 involve target position 

vector rk that is directly unobservable and then represents 

the random nuisance parameter vector. In literature, 

different models can be found to describe the target position 

vector, however, the particular model chosen for the target 

position vector does not affect the identifiability of the error 

bias vector Φ to be estimated. Radar #1 is assumed to be 

ideal, i.e. without bias errors, then its reference system can 

be taken as the absolute reference system. Under this 

assumption, the measurement model of radar #1 is given by: 

 ( )1

1, 1

k k

m k

−= +v h r n  (10) 

where the noise vector n1
k
 is zero-mean, Gaussian 

distributed with covariance matrix given by 
2 2 2

1 ,1 ,1 ,1
diag( , , )ρ θ εσ σ σ=C . The measurement model of radar 

#2 has been derived in [9] as: 

 
( ) ( )( )

( )

1

2, 2

2, ,

k T k

m m k m

k

k

d d d
−  = + − + − + 

+

v h R Θ Θ r t t v n

µ r Φ n�

 (11) 

where R is a rotation matrix and 
T
 defines the transpose 

operator. The noise vector n2
k
 is assumed to be zero-mean, 

Gaussian distributed, independent of n1
k
, with covariance 

matrix given by 2 2 2

2 ,2 ,2 ,2diag( , , )ρ θ εσ σ σ=C . First, we define 

three sets of K elements as follows: 

 { } { } { }1 1, 2 2, 11 1
, , ,

K K Kk k
m m k kk k

V V R
== =

= = =v v r  (12) 
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where V1 and V2 are the sets of the K independent 

observations coming from radars #1 and #2, and R is the set 

of the K target positions, which are the random nuisance 

parameters for our parameter estimation problem. In order 

to investigate the identifiability of the error bias vector in 

eq. (9), and then, using Definition 3, to apply Theorem 1 

and Corollary 3 to this estimation problem, we have to 

evaluate the following pdf: 

 ( ) ( )1 2 1 2, ; , , ;p V V p V V R dR= ∫Φ Φ  (13) 

As discussed in [9], it is not possible to evaluate in closed 

form the marginal pdf p(V1,V2;Φ) and only the analytical 

expression of the joint pdf p(V1,V2,R;Φ) is known. For this 

reason, the classical definition of identifiability cannot be 

applied. However, since the joint pdf is known, the MFIM 

can be easily evaluated, then we adopt the definition of 

identifiability stated in Definition 5. Following Corollary 4, 

to investigate the local identifiability under Definition 5, we 

have to check if the MFIM IM(Φ) is a full rank matrix. First, 

we start to evaluate the MFIM as: 

 

( ) ( )

( )

1 2

1, 2,

2

, , 1 2

2

1, 2,, ,
1

ln , ;

ln , ; .k k
m m k

M V V Rij
i j

K
k k

m m k

k i j

E p V V R

E p
=

 ∂ 
= −     ∂Φ ∂Φ  
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∑ v v r

I Φ Φ

v v r Φ

 

  (14) 

From the measurement models in eqs. (10) and (11), we 

have that: 

 ( ) ( ) ( )1, 2, 1, 2,, ; ;k k k k
m m k m k m kp p p=v v r Φ v r v r Φ  (15) 

where we made explicit the fact that the pdf of v
k
1,m|rk does 

not depend on the parameters vector Φ. By inserting eq. 

(15) in eq. (14), we get: 

 ( ) ( ){ }
1

,
k

K

M kij ij
k

E
=

=      ∑ rI Φ G r Φ , (16) 

where 

 ( ) ( )
2,

2

2,, ln ;k
m k

k

k m kij
i j

E p
 ∂ 

−     ∂Φ ∂Φ  
v r

G r Φ v r Φ�  (17) 

and, from eq. (11), 
2, 2

( ( , ), )k

m k k
v r µ r Φ C∼ N . Finally, the 

entries of matrix G(rk,Φ) can be evaluated as shown in 

Appendix 3C of [5]. Unfortunately, the mean value w.r.t. rk 

in eq. (16) cannot be evaluated in closed form due to the 

analytical complexity of the entries of the matrix G(rk,Φ), 

and it is evaluated by running independent Monte Carlo 

(MC) trials. In our simulations, we used 100 MC trials. 

Finally, to investigate the local identifiability of the error 

bias vector Φ, following Corollary 4, we have to calculate 

the rank rM(Φ) of the MFIM. By using the Matlab® 

function rank to evaluate rM(Φ), it can be shown that 

rM(Φ)=dΦ-1, where dΦ is the dimension of the bias vector 

Φ. In particular rM(Φ)=8, while dΦ=9 (see eq. (9)). This 

means that the error bias vector Φ is not identifiable under 

Definition 5 and then, from Theorem 3, neither under 

Definition 2. Such non identifiability can be deduced by the 

geometry of the relative grid-locking problem [9]. It must be 

noted in fact that the azimuth measurement bias dθ and the 

yaw attitude bias dξ cannot be distinguished and they should 

be merged into a single bias. Because of this geometrical 

coupling, we can define a single bias error as dζ=dθ+dξ. 

Then we can define a new parameter vector as: 

 ( )
T

x y z
d d d d d dt dt dtρ ε χ ψ ζ′ =Φ . (18) 

It can be shown using exactly the same procedure as before 

that Φ' is locally identifiable under Definition 5. 
 

5. CONCLUSIONS 
 

In this paper, we have first discussed and summarized 

the main concepts on the model identifiability problem. 

Then, we have generalized the fundamental results on the 

identifiability to the case where random nuisance parameters 

are present in the problem. In particular, an alternative 

definition of identifiability is provided. Such new definition 

is always applicable, but it is weaker than the classical one. 

The link between identifiability property and the rank of the 

classical and modified FIM is investigated. Finally, we 

applied this new definition of identifiability to the relative 

grid-locking problem for netted radar system. Future works 

will explore the possibility to extend these results to the 

hybrid estimation problem [7] and then to investigate the 

link between the identifiability and the hybrid FIM. 
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