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ABSTRACT

This work studies the asynchronous behavior of diffusion adap-

tation strategies for distributed optimization over networks.

Under the assumed model, agents in the network may stop

updating their estimates or may stop exchanging information

at random times. It is expected that asynchronous behavior

degrades performance. The analysis quantifies by how much

performance degrades and reveals that the learning rate and

the mean-square stability conditions of the network are influ-

enced by the rates of occurrence of the asynchronous events.

Index Terms— Distributed optimization, diffusion adap-

tation, asynchronous behavior, adaptive networks.

1. INTRODUCTION

Distributed optimization over multi-agent networks is an im-

portant problem in many contexts, including distributed esti-

mation [1–4], distributed machine learning [5], resource allo-

cation [6], flocking, swarming, and distributed inference and

decision [7, 8]. Several decentralized solutions, such as con-

sensus strategies [9–16], incremental strategies [17–19], and

diffusion strategies [1–3], have been proposed and studied in

the literature. Among these schemes, diffusion strategies are

attractive because they are scalable, robust, fully-distributed,

and able to endow networks with real-time adaptation and

learning abilities.

An underlying assumption used by the traditional diffu-

sion strategies developed in [1–3] is that all agents act syn-

chronously. At every iteration i, each agent k must complete

its adaptation step before its neighbors start their combina-

tion steps. There is an implicit assumption of coordinated

behavior throughout the network. In this work, we examine

the effect of asynchronous events that can occur randomly

across the network. These events may occur as a result of

random data arrival times, random agent failures, the turning

on and off of agents for energy conservation, or the possibility

that some agents are more computationally powerful than oth-

ers so that they can complete their processing more quickly.

Some related and useful work on asynchronous processing

for consensus-type strategies can be found in [11–16]. We
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adopt a more general asynchronous model than before and

consider the general diffusion strategies developed in [3] for

distributed optimization.

Notation: We use lowercase letters to denote vectors, up-

percase letters for matrices, plain letters for deterministic vari-

ables, and boldface letters for random variables.

2. ASYNCHRONOUS DIFFUSION ADAPTATION

We consider a connected network consisting of N agents,

where the kth agent has an individual cost (or utility) function

denoted by Jk(w):R
M 7−→R. The objective of the network

is to determine the unique M × 1 vector wo that uniquely

optimizes the following problem:

minimize
w

Jglob(w) ,

N∑

k=1

Jk(w) (1)

where {Jk(w)} are assumed to be differentiable and strongly

convex. We assume a common minimizerwo for all {Jk(w)},

which corresponds to the important situation where all agents

are seeking a common objective. This scenario is common in

biological networks, such as fish schools moving towards a

food source or away from a predator [8].

A diffusion strategy was devised in [3] to solve (1) in a

fully distributed manner. We describe here the Adapt-then-

Combine (ATC) form of the algorithm. In this strategy, agents

combine information from their immediate neighbors and em-

ploy updates of the following form:

ψk,i = wk,i−1 − µk∇̂wJk(wk,i−1) (2)

wk,i =
∑

l∈Nk

alkψl,i (3)

where ∇̂wJk(wk,i−1) denotes a perturbed measurement of

the true gradient vector, say, of the form:

∇̂wJk(wk,i−1) = ∇wJk(wk,i−1) + vk,i (4)

where ∇wJk(wk,i−1) denotes the gradient of Jk(w) evalu-

ated atwk,i−1 and vk,i represents gradient noise that may de-

pend onwk,i−1. The nonnegative combination weights {alk}
are zero whenever node l is not connected to node k, i.e.,

20th European Signal Processing Conference (EUSIPCO 2012) Bucharest, Romania, August 27 - 31, 2012

© EURASIP, 2012  -  ISSN 2076-1465 86



l /∈ Nk, where Nk denotes the neighborhood of node k, and

they satisfy
∑

l∈Nk
alk = 1 for all k. Before proceeding with

our model and the subsequent analysis, we state our assump-

tions on the individual cost functions and gradient noise in a

manner similar to [3].

Assumption 1 (Bounded Hessian). The Hessian matrix of

each individual cost function Jk(w) is bounded as:

λk,minIM ≤ ∇2
wJk(w) ≤ λk,maxIM (5)

where 0 < λk,min ≤ λk,max.

Assumption 2 (Gradient noise). The gradient noise vk,i sat-

isfies:

E(vk,i|wi−1)=0, E‖vk,i‖
2≤αE‖wo−wk,i−1‖

2+σ2
v (6)

where wi , col{w1,i,w2,i, . . . ,wN,i}, α ≥ 0, and σ2
v ≥ 0

for all i and k.

To model asynchronous behavior, we modify the ATC

strategy (2)–(3) to the following form:

ψk,i = wk,i−1 − µk(i)∇̂wJk(wk,i−1) (7)

wk,i =
∑

l∈Nk

alk(i)ψl,i (8)

where µk(i) is now a random step-size for node k at time i
and {alk(i)} are random combination weights. We adopt the

following assumption on {µk(i),alk(i)}.

Assumption 3 (Asynchronous Model).

1. The step-sizes {µk(i)} are distributed as follows:

µk(i) =

{
µk > 0, with probability pk

0, with probability 1− pk
(9)

and they are temporally and spatially independent for

different k and i.

2. The combination weights {alk(i)} are distributed as

follows:

alk(i) =

{
alk > 0, with probability qlk

0, with probability 1− qlk
(10)

for all l ∈ Nk\{k}, and they are temporally inde-

pendent for different i. Node k adjusts its own weight

akk(i) at each iteration by

akk(i) = 1−
∑

l∈Nk\{k}

alk(i) (11)

to ensure
∑

l∈Nk
alk(i) = 1.

3. µk(i) and alm(j) are mutually-independent for all k,

l, m, i, and j; they are also independent of any other

random variables.

The second part of Assumption 3 was also used in [14,16]. It

is worth noting that we allow {alk(i)} to be spatially cor-

related for different l and k. For different realizations of

{µk(i),alk(i)}, the diffusion strategy (7)–(8) is able to cap-

ture various types of asynchronous behavior that may occur.

It was shown in [3] that the synchronous diffusion strategy

(2)–(3) is mean-square stable if the step-sizes are sufficiently

small. We establish in the sequel that this result still holds

for the asynchronous diffusion strategy (7)–(8), which means

that the diffusion strategy is robust to asynchronous events.

3. MEAN-SQUARE STABILITY ANALYSIS

Let us introduce the error vectors:

ψ̃k,i , wo −ψk,i, w̃k,i , wo −wk,i (12)

By (4), the error recursion of (7)–(8) is then given by

ψ̃k,i = [IM − µk(i)Hk,i−1] w̃k,i−1 + µk(i)vk,i (13)

w̃k,i =
∑

l∈Nk

alk(i)ψ̃l,i (14)

whereHk,i−1 is a positive-definite random matrix, defined as

Hk,i−1 ,

∫ 1

0

∇2
wJk (w

o − t · w̃k,i−1) dt (15)

Since the squared Euclidean norm ‖ · ‖2 is a convex function,

applying Jensen’s inequality to (14), the variance of w̃k,i can

be bounded by

E‖w̃k,i‖
2 ≤

∑

l∈Nk

ālkE‖ψ̃l,i‖
2 (16)

where

ālk,Ealk(i)=





qlkalk, l∈Nk\{k}

1−
∑

l∈Nk\{k}
qlkalk, l=k

0, otherwise

(17)

We collect the {alk(i)} and {ālk} into two N×N matrices

Ai and Ā, respectively, such that Ā=EAi. It can be verified

from Assumption 3 that bothAi and Ā are left-stochastic, i.e.,

AT

i 1N = ĀT
1N = 1N , where 1N denotes the N×1 all-one

vector. By Assumptions 2 and 3 and (13), we get

E‖ψ̃k,i‖
2 = E(‖w̃k,i−1‖

2
Σk,i−1

) + pkµ
2
k E‖vk,i‖

2 (18)

Σk,i−1 , (IM − µ̄kHk,i−1)
T(IM − µ̄kHk,i−1)

+ pk(1− pk)µ
2
kH

T

k,i−1Hk,i−1 (19)
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where

µ̄k , Eµk(i) = pkµk (20)

From Assumption 1 and expression (15), we obtain

0 ≤ Σk,i−1 ≤ γ2
kIM (21)

where

γ2
k , max

{
(1− µ̄kλk,max)

2, (1 − µ̄kλk,min)
2
}

+ pk(1− pk)µ
2
kλ

2
k,max (22)

By Assumption 2, applying Lemma 3 from [3] and substitut-

ing (21) into (18), we can bound the variance of ψ̃k,i by

E‖ψ̃k,i‖
2 ≤ (γ2

k + αpkµ
2
k)E‖w̃k,i−1‖

2 + pkµ
2
kσ

2
v (23)

Introduce the global mean-square-deviation (MSD) vector:

w̃i , col{E‖w̃1,i‖
2,E‖w̃2,i‖

2, . . . ,E‖w̃N,i‖
2} (24)

From (16) and (23), it can be verified that

w̃i � ĀTΓw̃i−1 + ĀTΩ1N (25)

where � denotes element-wise ordering and

Γ , diag{γ2
1 + αp1µ

2
1, . . . , γ

2
N + αpNµ2

N} (26)

Ω , diag{p1µ
2
1σ

2
v , . . . , pNµ2

Nσ2
v} (27)

Then, using Lemma 4 from [3] and extending the argument

from its Appendix A, we arrive at a sufficient condition on the

step-sizes for the mean-square stability of the asynchronous

diffusion strategy (7)–(8):

µk < min

{
2λk,max

λ2
k,max+α

,
2λk,min

pkλ2
k,min+(1−pk)λ2

k,max+α

}

(28)

Since 0 < pk < 1, we get pkλ
2
k,min+(1−pk)λ

2
k,max ≥ λ2

k,min.

Thus, the bound (28) is less than or equal to the bound (67) in

[3], meaning that the dynamic range of each step-size shrinks

due to the asynchronous behavior. If condition (28) is satis-

fied, then, as i → ∞, it can be shown that

lim sup
i→∞

‖w̃i‖∞≤
‖Ω‖∞

1−‖Γ‖∞
=

maxk(pkµ
2
kσ

2
v)

1−maxk(γ2
k+αpkµ2

k)
(29)

where ‖ · ‖∞ denotes the ℓ∞ norm (or the maximum absolute

row sum). When the step-sizes {µk} are sufficiently small,

we can further establish the following inequality:

lim sup
i→∞

‖w̃i‖∞ ≤
σ2
v

2

maxk(pk)

mink(pkλk,min)

(maxk µk)
2

mink µk

(30)

The bound (30) implies that, if step-sizes {µk} are sufficiently

small, the MSD at each node k, i.e., E‖w̃k,i‖
2, can become

sufficiently small. This result is clear when the step-sizes are

uniform, say, µk = µ. Then, the right-hand side of (30) is of

the order of µ.

4. STEADY-STATE PERFORMANCE

So far we established that the steady-state estimators {wk,i}
of the asynchronous diffusion strategy (7)–(8) converge with

high probability to a 2-norm ball B(wo, r) , {w ∈ RM×1;
‖wo − w‖ < r} that is centered at the optimal solution wo

with radius r. The value of r, according to expression (30),

is proportional to the step-sizes and can be sufficiently small.

It is worth noting that E‖w̃k,i‖2 may not converge to a fixed

value (meaning mean-square convergence) but instead may

drift and fluctuate in the range [0, r2]. Nevertheless, if r is

sufficiently small, we can still find an approximate MSD for

the asynchronous diffusion strategy (7)–(8). So let us intro-

duce a small step-size assumption.

Assumption 4 (Small step-sizes). The step-sizes are small

enough such that the radius r of the 2-norm ball B(wo, r) is

also sufficiently small, i.e., r ≪ 1.

Based on Assumption 4, the individual cost function Jk(w)
can be approximated by a quadratic function that is obtained

by truncating the higher terms in its Taylor series expansion,

i.e.,

Jk(w) ≈ Jk(w
o)+‖wo−w‖2∇2

wJk(wo), w ∈ B(wo, r) (31)

Then, the original minimization problem (1) is approximately

equivalent to the following problem

minimize
w∈B(wo,r)

N∑

k=1

‖wo − w‖2∇2
wJk(wo) (32)

We can use the energy conservation technique [20] to evaluate

the steady-state MSD for problem (32). Let us denote

Hk , ∇2
wJk(w

o) (33)

Then, the variance relation for the network error vector w̃i

can be obtained from (13)–(14) to be

E‖w̃i‖
2
Σ = E‖w̃i−1‖

2
Σ′ + E‖AT

i Mivi‖
2
Σ (34)

where

Ai , Ai ⊗ IM (35)

Mi , diag{µ1(i)IM ,µ2(i)IM , . . . ,µN(i)IM} (36)

vi , col{v1,i,v2,i, . . . ,vN,i} (37)

H , diag {H1, H2, . . . , HN} (38)

Σ′ , E (INM−MiH)AiΣA
T

i (INM−MiH) (39)

Under Assumptions 2 and 4, whenwk,i ∈ B(wo, r), or, equiv-

alently, w̃k,i ∈ B(0, r), the first term on the right-hand side

of (6) becomes negligible. Therefore, we shall assume that

the gradient noise vk,i is independent of any other random

variable and its moments are given by

Evk,i = 0, Evk,iv
T

k,i = Rv,k ≥ 0 (40)
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We collect the {Rv,k} into the network covariance matrix

Rv , Eviv
T

i = diag {Rv,1, Rv,2, . . . , Rv,N} (41)

In order to exploit the block structure of the weighting matrix

Σ′ in (39), let us introduce the block vectorization operation

bvec(Σ) [1, 21], which transforms an NM × NM matrix Σ
into an N2M2 × 1 vector by stacking the columns from each

block of Σ on top of each other. Specifically, we first divide Σ
into N×N blocks that are denoted by {Σlk} and whose sizes

are M×M . The N2M2×1 vector bvec(Σ) is then defined as

bvec(Σ) , col{vec(Σ11), vec(Σ21), . . . , vec(ΣN1),

vec(Σ12), vec(Σ22), . . . , vec(ΣN2), . . . ,

vec(Σ1N ), vec(Σ2N ), . . . , vec(ΣNN )} (42)

where vec(·) denotes the vector formed by vertically stacking

the columns of its matrix argument. We consider the block

Kronecker product of two block matrices X and Y [1, 21],

and denote it by X ⊗b Y . The (l, k)th block of X ⊗b Y is

defined as

[X⊗bY]lk ,




Xlk⊗Y11 Xlk⊗Y12 . . . Xlk⊗Y1N

Xlk⊗Y21 Xlk⊗Y22 . . . Xlk⊗Y2N

...
...

. . .
...

Xlk⊗YN1 Xlk⊗YN2 . . . Xlk⊗YNN




(43)

where {Xlk, Ylk} are the (l, k)th blocks of {X ,Y}, respec-

tively, and ⊗ denotes the Kronecker product. It is shown

in [21] that

bvec(XΣY) = (Y ⊗b X
T) bvec(Σ) (44)

Moreover, it can be verified that

Tr(XY) = [bvec(XT)]T · bvec(Y) (45)

Let us introduce the vector notation:

σ , bvec(Σ), σ′ , bvec(Σ′) (46)

and the N2M2 ×N2M2 matrix F :

F , E [AT

i (INM−MiH)]⊗b [A
T

i (INM−MiH)] (47)

Then, from (39) and (44), we can get

σ′ = F · σ (48)

Under Assumptions 3 and 4, it can be shown that F is stable,

i.e., |ρ(F)| < 1, if the step-sizes {µk} also satisfy condition

(28). By (36), (41), and (45), we get

E‖AT

i Mivi‖
2
Σ = Tr(YΣ) = [bvec (Y)]T bvec(Σ) (49)

where

Y , EA
T

i MiRvMiAi (50)

Then, from (48), relation (34) can be rewritten as

E‖w̃i‖
2
σ = E‖w̃i−1‖

2
Fσ + [bvec (Y)]T σ (51)

where the notation ‖ · ‖σ ≡ ‖ · ‖Σ. From (51) we see that

the spectral radius of the matrix F , i.e., ρ(F), determines the

convergence rate. Although finding ρ(F) is generally non-

trivial, it can be bounded, under Assumption 4, by

ρ(F) ≤ max
k

[
‖IM−µ̄kHk‖

2
2+pk(1−pk)µ

2
k‖Hk‖

2
2

]

≈ 1− 2mink(µ̄kλk,min) (52)

From (52), we see that the effective step-sizes are {µ̄k =
pkµk < µk}, meaning that the learning rate for each node

in the network is reduced. In steady-state, when i → ∞, re-

lation (51) becomes

lim
i→∞

E‖w̃i‖
2
(I

N2M2−F)σ = [bvec (Y)]T σ (53)

Recall that we are free to choose Σ, so let us select it such that

(IN2M2 −F)bvec(Σ) = bvec(INM/N). Then, the network

MSD for problem (32), which approximates the MSD for

problem (1) under Assumption 4, can be evaluated through

(53) as

MSD =
1

N
[bvec (Y)]T (IN2M2−F)−1bvec(INM ) (54)

5. SIMULATION RESULTS

We examine the theoretical result (54) by simulation. We

consider the topology of Fig. 1 with N = 20 nodes. The

individual cost function for node k is chosen as the mean-

squared-error Jk(w) = E|dk(i)− uk,iw|2, where the M × 1
unknown parameter wo ∈ CM×1 of length M = 3 is ran-

domly generated. We assume a linear data model: dk(i) =
uk,iw

o+vk(i), where the scalar measurement datadk(i) ∈ C

and the 1 × M regression data uk,i ∈ C1×M are accessible

to node k at time i. The regression data uk,i are white but

nonuniform across the network, i.e., Ru,k , Eu∗
k,iuk,i =

σ2
u,kIM , where {σ2

u,k} are randomly generated. The vari-

ances of the zero-mean noise signals {vk(i)} are denoted by

σ2
v,k , E|vk(i)|

2 and they are randomly generated. The step-

sizes µk = 0.03 are uniform across the network. We sim-

ulated the diffusion algorithm with the uniform combination

rule, i.e., alk = 1
|Nk|

for l ∈ Nk, where |Nk| denotes the car-

dinal of the set Nk. Four different cases are simulated: i) 70%

idle: pk = qlk = 0.7; ii) 40% idle: pk = qlk = 0.4; iii) 10%

idle: pk = qlk = 0.1; and iv) no idle nodes: pk = qlk = 1
(this case corresponds to the traditional synchronous diffusion

(2)–(3)). The network MSD curves are averaged over 50 ex-

periments and are plotted in Fig. 2. The simulation results

exhibit a good match with theory.
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Fig. 1. An adaptive network with N = 20 nodes.

Fig. 2. Network MSD curves for the asyn. diffusion (7)–(8).

We also compare the asynchronous diffusion algorithm

(7)–(8) with the corresponding synchronous diffusion (2)–(3)

by setting the step-sizes and the combination weights of the

latter algorithm to µ′
k = µ̄k and a′lk = ālk, respectively,

where µ̄k and ālk are given by (20) and (17). We used the

diffusion algorithm with the uniform combination rule and

simulated the case with 70% idleness, i.e., pk = qlk = 0.7.

The network MSD curves are averaged over 50 experiments

and are plotted in Fig. 3. Although both algorithms, asyn-

chronous diffusion (7)–(8) and synchronous diffusion (2)–(3),

show the same convergence rate, the asynchronous version, as

expected, suffers degradation in its MSD performance due to

the additional randomness throughout the adaptation process.
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